
Let for the value of \[x\in \left( 0,\dfrac{3}{2} \right)\], we have the functions as \[f\left( x \right)=\sqrt{x}\], \[g\left( x \right)=\tan x\] and \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\]. If the function as \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\], then determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\].
(a) \[\tan \dfrac{\pi }{12}\]
(b) \[\tan \dfrac{7\pi }{12}\]
(c) \[\tan \dfrac{11\pi }{12}\]
(d) \[\tan \dfrac{5\pi }{12}\]
Answer
556.8k+ views
Hint: In this question, in order to determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\] given that \[f\left( x \right)=\sqrt{x}\], \[g\left( x \right)=\tan x\] and \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\]. If \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\], then determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\] where the function \[\phi \] is defined by composition of functions \[f\left( x \right),g\left( x \right)\] and \[h\left( x \right)\]. Now in this question we will use the following trigonometric identity that \[\tan \left( b-a \right)=\dfrac{\tan b-\tan a}{1+\tan a\tan b}\] and we will also be using the value \[\tan \dfrac{\pi }{4}=1\] in order to determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\].
Complete step-by-step solution:
We are given that \[x\in \left( 0,\dfrac{3}{2} \right)\].
Let the function \[f\] is defined by \[f\left( x \right)=\sqrt{x}\].
Let the function \[g\] is defined by \[g\left( x \right)=\tan x\].
Let the function \[h\] is defined by \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\]
Now let us suppose the function \[\phi \] is defined by composition of functions \[f\left( x \right),g\left( x \right)\] and \[h\left( x \right)\] given by \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\].
Now since we know that the composition of functions is associative.
Therefore we have
\[\begin{align}
& \phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right) \\
& =\left( h\circ \left( f\circ g \right) \right)\left( x \right)
\end{align}\]
Now in order to find the function \[\phi \], we will first determine the composition of the function \[f\circ g\].
Given that \[f\left( x \right)=\sqrt{x}\] and \[g\left( x \right)=\tan x\], the composition \[f\circ g\] is given by
\[\begin{align}
& f\circ g=f\left( \tan x \right) \\
& =\sqrt{\tan x}
\end{align}\]
Now we will determine the composition function \[\left( h\circ \left( f\circ g \right) \right)\left( x \right)\] using \[f\circ g=\sqrt{\tan x}\] and \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\].
We have
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=h\left( f\circ g \right) \\
& =h\left( \sqrt{\tan x} \right) \\
& =\dfrac{1-{{\left( \sqrt{\tan x} \right)}^{2}}}{1+{{\left( \sqrt{\tan x} \right)}^{2}}} \\
& =\dfrac{1-\tan x}{1+\tan x} \\
& =\dfrac{1+\left( -\tan x \right)}{1-\left( -\tan x \right)}
\end{align}\]
Now since we know that \[\tan \dfrac{\pi }{4}=1\] and since \[\tan \left( -\dfrac{\pi }{4} \right)=-1\], using this we get that
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=\dfrac{1+\left( -\tan x \right)}{1-\left( -\tan x \right)} \\
& =-\left( \dfrac{\tan \dfrac{\pi }{4}+\left( -\tan x \right)}{1-\left( \tan \left( \dfrac{\pi }{4} \right)\left( -\tan x \right) \right)} \right) \\
& =\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right)
\end{align}\]
Where
\[\begin{align}
& 1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)=1-\tan \left( -x \right)\left( 1 \right) \\
& =1+\tan x
\end{align}\]
Now since we know the following trigonometric identity that \[\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}\].
On comparing the expression \[\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}\] with the expression \[\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right)\], we get that
\[b=-x\] and \[a=\dfrac{\pi }{4}\].
Now we have
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=-\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right) \\
& =\tan \left( \dfrac{\pi }{4}+\left( -x \right) \right) \\
& =\tan \left( \dfrac{\pi }{4}-x \right)
\end{align}\]
Therefore since \[\phi \] is defined by \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\],
We have
\[\phi \left( x \right)=\tan \left( \dfrac{\pi }{4}-x \right)\]
Now in order to find the value of \[\phi \left( \dfrac{\pi }{3} \right)\], we will substitute \[x=\dfrac{\pi }{3}\] in \[\phi \left( x \right)=\tan \left( \dfrac{\pi }{4}-x \right)\].
Then we get
\[\begin{align}
& \phi \left( \dfrac{\pi }{3} \right)=\tan \left( \dfrac{\pi }{4}-\dfrac{\pi }{3} \right) \\
& =\tan \left( \dfrac{3\pi -4\pi }{12} \right) \\
& =\tan \left( \dfrac{-\pi }{12} \right)
\end{align}\]
Now since \[\tan \left( -x \right)=-\tan x\], therefore we have
\[\phi \left( \dfrac{\pi }{3} \right)=-\tan \left( \dfrac{\pi }{12} \right)\]
Also since \[-\tan x=\tan \left( \pi -x \right)\], the above expression becomes
\[\begin{align}
& \phi \left( \dfrac{\pi }{3} \right)=-\tan \left( \dfrac{\pi }{12} \right) \\
& =\tan \left( \pi -\dfrac{\pi }{12} \right) \\
& =\tan \dfrac{11\pi }{12}
\end{align}\]
Therefore we get that \[\phi \left( \dfrac{\pi }{3} \right)=\tan \dfrac{11\pi }{12}\].
Hence option (c) is correct.
Note: In this problem, in order to determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\] we are using the following identities. We have \[\tan \left( b-a \right)=\dfrac{\tan b-\tan a}{1+\tan a\tan b}\] and we will also be using the value \[\tan \dfrac{\pi }{4}=1\] , \[\tan \left( -x \right)=-\tan x\] and \[-\tan x=\tan \left( \pi -x \right)\].
Complete step-by-step solution:
We are given that \[x\in \left( 0,\dfrac{3}{2} \right)\].
Let the function \[f\] is defined by \[f\left( x \right)=\sqrt{x}\].
Let the function \[g\] is defined by \[g\left( x \right)=\tan x\].
Let the function \[h\] is defined by \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\]
Now let us suppose the function \[\phi \] is defined by composition of functions \[f\left( x \right),g\left( x \right)\] and \[h\left( x \right)\] given by \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\].
Now since we know that the composition of functions is associative.
Therefore we have
\[\begin{align}
& \phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right) \\
& =\left( h\circ \left( f\circ g \right) \right)\left( x \right)
\end{align}\]
Now in order to find the function \[\phi \], we will first determine the composition of the function \[f\circ g\].
Given that \[f\left( x \right)=\sqrt{x}\] and \[g\left( x \right)=\tan x\], the composition \[f\circ g\] is given by
\[\begin{align}
& f\circ g=f\left( \tan x \right) \\
& =\sqrt{\tan x}
\end{align}\]
Now we will determine the composition function \[\left( h\circ \left( f\circ g \right) \right)\left( x \right)\] using \[f\circ g=\sqrt{\tan x}\] and \[h\left( x \right)=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}\].
We have
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=h\left( f\circ g \right) \\
& =h\left( \sqrt{\tan x} \right) \\
& =\dfrac{1-{{\left( \sqrt{\tan x} \right)}^{2}}}{1+{{\left( \sqrt{\tan x} \right)}^{2}}} \\
& =\dfrac{1-\tan x}{1+\tan x} \\
& =\dfrac{1+\left( -\tan x \right)}{1-\left( -\tan x \right)}
\end{align}\]
Now since we know that \[\tan \dfrac{\pi }{4}=1\] and since \[\tan \left( -\dfrac{\pi }{4} \right)=-1\], using this we get that
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=\dfrac{1+\left( -\tan x \right)}{1-\left( -\tan x \right)} \\
& =-\left( \dfrac{\tan \dfrac{\pi }{4}+\left( -\tan x \right)}{1-\left( \tan \left( \dfrac{\pi }{4} \right)\left( -\tan x \right) \right)} \right) \\
& =\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right)
\end{align}\]
Where
\[\begin{align}
& 1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)=1-\tan \left( -x \right)\left( 1 \right) \\
& =1+\tan x
\end{align}\]
Now since we know the following trigonometric identity that \[\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}\].
On comparing the expression \[\tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}\] with the expression \[\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right)\], we get that
\[b=-x\] and \[a=\dfrac{\pi }{4}\].
Now we have
\[\begin{align}
& \left( h\circ \left( f\circ g \right) \right)\left( x \right)=-\left( \dfrac{\tan \dfrac{\pi }{4}+\tan \left( -x \right)}{1-\tan \left( \dfrac{\pi }{4} \right)\tan \left( -x \right)} \right) \\
& =\tan \left( \dfrac{\pi }{4}+\left( -x \right) \right) \\
& =\tan \left( \dfrac{\pi }{4}-x \right)
\end{align}\]
Therefore since \[\phi \] is defined by \[\phi \left( x \right)=\left( \left( h\circ f \right)\circ g \right)\left( x \right)\],
We have
\[\phi \left( x \right)=\tan \left( \dfrac{\pi }{4}-x \right)\]
Now in order to find the value of \[\phi \left( \dfrac{\pi }{3} \right)\], we will substitute \[x=\dfrac{\pi }{3}\] in \[\phi \left( x \right)=\tan \left( \dfrac{\pi }{4}-x \right)\].
Then we get
\[\begin{align}
& \phi \left( \dfrac{\pi }{3} \right)=\tan \left( \dfrac{\pi }{4}-\dfrac{\pi }{3} \right) \\
& =\tan \left( \dfrac{3\pi -4\pi }{12} \right) \\
& =\tan \left( \dfrac{-\pi }{12} \right)
\end{align}\]
Now since \[\tan \left( -x \right)=-\tan x\], therefore we have
\[\phi \left( \dfrac{\pi }{3} \right)=-\tan \left( \dfrac{\pi }{12} \right)\]
Also since \[-\tan x=\tan \left( \pi -x \right)\], the above expression becomes
\[\begin{align}
& \phi \left( \dfrac{\pi }{3} \right)=-\tan \left( \dfrac{\pi }{12} \right) \\
& =\tan \left( \pi -\dfrac{\pi }{12} \right) \\
& =\tan \dfrac{11\pi }{12}
\end{align}\]
Therefore we get that \[\phi \left( \dfrac{\pi }{3} \right)=\tan \dfrac{11\pi }{12}\].
Hence option (c) is correct.
Note: In this problem, in order to determine the value of \[\phi \left( \dfrac{\pi }{3} \right)\] we are using the following identities. We have \[\tan \left( b-a \right)=\dfrac{\tan b-\tan a}{1+\tan a\tan b}\] and we will also be using the value \[\tan \dfrac{\pi }{4}=1\] , \[\tan \left( -x \right)=-\tan x\] and \[-\tan x=\tan \left( \pi -x \right)\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

