
Let $f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{1-x} \right)$ for $x\ne 1$. Then:
(a) $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ does not exist
(b) $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ does not exist
(c) $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=0$
(d) $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=0$
Answer
576.9k+ views
Hint: First, before proceeding for this, we must solve it according to the given options to get the correct answer. Then, starting with the condition $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$, we get $1-x<0$, we get the value of this limit. Then, proceeding with the condition $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$, we get $1-x > 0$,we get the value of this limit. Then we get the answers for both the limit conditions.
Complete step-by-step answer:
In this question, we are supposed to find the condition for f(x) when $f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{1-x} \right)$.
So, before proceeding for this, we must solve it according to the given options to get the correct answer.
Then, starting with the condition $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$, we get:
$\begin{align}
& x>1 \\
& \Rightarrow 1-x<0 \\
\end{align}$
So, the above condition gives the value of $\left| 1-x \right|$, we get the value as $-\left( 1-x \right)$, then by substituting this value in the given limit function as:
$\begin{align}
& f\left( x \right)=\dfrac{1-x\left( 1-\left( 1-x \right) \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( 1-1+x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-{{x}^{2}}}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{\left( 1-x \right)\left( 1+x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
\end{align}$
Then, after substituting the limit as 1 stated in the option, we get:
$\begin{align}
& f\left( 1 \right)=\dfrac{\left( 1-1 \right)\left( 1+1 \right)}{1-1}\cos \left( \dfrac{1}{1-1} \right) \\
& \Rightarrow f\left( 1 \right)=2\cos \left( \dfrac{1}{0} \right) \\
\end{align}$
Here, we know that $\cos \left( \dfrac{1}{0} \right)$value does not exist, so the value of $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$does not exist.
Similarly, by proceeding with the condition $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$, we get:
$\begin{align}
& x<1 \\
& \Rightarrow 1-x>0 \\
\end{align}$
So, the above condition gives the value of $\left| 1-x \right|$, we get the value as $\left( 1-x \right)$, then by substituting this value in the given limit function as:
\[\begin{align}
& f\left( x \right)=\dfrac{1-x\left( 1+\left( 1-x \right) \right)}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( 1+1-x \right)}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-2x+{{x}^{2}}}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{{{\left( x-1 \right)}^{2}}}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=-\left( x-1 \right)\cos \left( \dfrac{1}{1-x} \right) \\
\end{align}\]
Then, after substituting the limit as 1 stated in the option, we get:
$\begin{align}
& f\left( 1 \right)=-\left( 1-1 \right)\cos \left( \dfrac{1}{1-1} \right) \\
& \Rightarrow f\left( 1 \right)=0\cos \left( \dfrac{1}{0} \right) \\
& \Rightarrow f\left( 1 \right)=0 \\
\end{align}$
Here, the value of $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is zero.
Hence, option (b) and (c) are correct.
Note: Now, to solve these types of questions we need to know some of the basic conversions beforehand so that we can easily proceed in these types of questions. So, the basic conversions are:
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Moreover, in this type of question, we don’t check after getting a single option as correct but sometimes we get more than one option as correct.
Complete step-by-step answer:
In this question, we are supposed to find the condition for f(x) when $f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{1-x} \right)$.
So, before proceeding for this, we must solve it according to the given options to get the correct answer.
Then, starting with the condition $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$, we get:
$\begin{align}
& x>1 \\
& \Rightarrow 1-x<0 \\
\end{align}$
So, the above condition gives the value of $\left| 1-x \right|$, we get the value as $-\left( 1-x \right)$, then by substituting this value in the given limit function as:
$\begin{align}
& f\left( x \right)=\dfrac{1-x\left( 1-\left( 1-x \right) \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( 1-1+x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-{{x}^{2}}}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{\left( 1-x \right)\left( 1+x \right)}{x-1}\cos \left( \dfrac{1}{1-x} \right) \\
\end{align}$
Then, after substituting the limit as 1 stated in the option, we get:
$\begin{align}
& f\left( 1 \right)=\dfrac{\left( 1-1 \right)\left( 1+1 \right)}{1-1}\cos \left( \dfrac{1}{1-1} \right) \\
& \Rightarrow f\left( 1 \right)=2\cos \left( \dfrac{1}{0} \right) \\
\end{align}$
Here, we know that $\cos \left( \dfrac{1}{0} \right)$value does not exist, so the value of $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$does not exist.
Similarly, by proceeding with the condition $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$, we get:
$\begin{align}
& x<1 \\
& \Rightarrow 1-x>0 \\
\end{align}$
So, the above condition gives the value of $\left| 1-x \right|$, we get the value as $\left( 1-x \right)$, then by substituting this value in the given limit function as:
\[\begin{align}
& f\left( x \right)=\dfrac{1-x\left( 1+\left( 1-x \right) \right)}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-x\left( 1+1-x \right)}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{1-2x+{{x}^{2}}}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=\dfrac{{{\left( x-1 \right)}^{2}}}{1-x}\cos \left( \dfrac{1}{1-x} \right) \\
& \Rightarrow f\left( x \right)=-\left( x-1 \right)\cos \left( \dfrac{1}{1-x} \right) \\
\end{align}\]
Then, after substituting the limit as 1 stated in the option, we get:
$\begin{align}
& f\left( 1 \right)=-\left( 1-1 \right)\cos \left( \dfrac{1}{1-1} \right) \\
& \Rightarrow f\left( 1 \right)=0\cos \left( \dfrac{1}{0} \right) \\
& \Rightarrow f\left( 1 \right)=0 \\
\end{align}$
Here, the value of $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is zero.
Hence, option (b) and (c) are correct.
Note: Now, to solve these types of questions we need to know some of the basic conversions beforehand so that we can easily proceed in these types of questions. So, the basic conversions are:
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Moreover, in this type of question, we don’t check after getting a single option as correct but sometimes we get more than one option as correct.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

