
Let $f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{x-1} \right)$ for $x\ne 1$, then
[a] $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$
[b] $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)$ does not exist
[c] $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=0$
[d] $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ does not exist.
Answer
598.2k+ views
Hint: Use the fact that for x<0 |x| = -x and for x>0 |x| = x ad at x = 0, |x| = 0. Use the property $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$ and
use $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$.
Complete step-by-step answer:
Observe that
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0 and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0. Using these properties evaluate $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and hence find whether $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exist or not
Here $g\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $f\left( x \right)=g(x)\cos \left( \dfrac{1}{x-1} \right)$.
We have LHL $=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,g\left( x \right)$
Using $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+\left| -h \right| \right)}{\left| -h \right|}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+h \right)}{h}$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,-h=0$
RHL $=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$
Using $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+h \right)\left( 1+\left| h \right| \right)}{\left| h \right|}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+2h+{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-1-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( -2-h \right)=-2$
Since $\text{LHL}\ne \text{RHL}$we have the limit of g(x) does not exist at x = 1.
Hence the limit of f(x) does not exist at 1.
Also since LHL of g(x) = 0, we have LHL of f(x) = 0 at x=1.
Hence $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$.
Hence option [a] is correct.
Since the RHL of g(x) is non-zero, the RHL of f(x) does not exist at x = 1. Hence option [d] is correct.
Hene options [a] and [d] are correct.
Note: [1] A limit of a function is said to be defined if and only if the Left-Hand Limit (LHL) is equal to the Right-Hand Limit(RHL),i.e. limit exists if and only if LHL = RHL.
[2] $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$
This is true because if the LHL or RHL of g(x) comes out to be non-zero, then the LHL or RHL of $g(x)\cos \left( \dfrac{1}{x-1} \right)$ will fail to exist as the latter quantity will be an oscillatory quantity. Hence either LHL or RHL will fail to exist, and hence the limit of the whole function will not exist.
use $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$.
Complete step-by-step answer:
Observe that
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0 and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0. Using these properties evaluate $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and hence find whether $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exist or not
Here $g\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $f\left( x \right)=g(x)\cos \left( \dfrac{1}{x-1} \right)$.
We have LHL $=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,g\left( x \right)$
Using $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+\left| -h \right| \right)}{\left| -h \right|}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+h \right)}{h}$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,-h=0$
RHL $=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$
Using $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+h \right)\left( 1+\left| h \right| \right)}{\left| h \right|}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+2h+{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-1-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( -2-h \right)=-2$
Since $\text{LHL}\ne \text{RHL}$we have the limit of g(x) does not exist at x = 1.
Hence the limit of f(x) does not exist at 1.
Also since LHL of g(x) = 0, we have LHL of f(x) = 0 at x=1.
Hence $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$.
Hence option [a] is correct.
Since the RHL of g(x) is non-zero, the RHL of f(x) does not exist at x = 1. Hence option [d] is correct.
Hene options [a] and [d] are correct.
Note: [1] A limit of a function is said to be defined if and only if the Left-Hand Limit (LHL) is equal to the Right-Hand Limit(RHL),i.e. limit exists if and only if LHL = RHL.
[2] $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$
This is true because if the LHL or RHL of g(x) comes out to be non-zero, then the LHL or RHL of $g(x)\cos \left( \dfrac{1}{x-1} \right)$ will fail to exist as the latter quantity will be an oscillatory quantity. Hence either LHL or RHL will fail to exist, and hence the limit of the whole function will not exist.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

