
Let $f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{x-1} \right)$ for $x\ne 1$, then
[a] $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$
[b] $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)$ does not exist
[c] $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=0$
[d] $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ does not exist.
Answer
514.2k+ views
Hint: Use the fact that for x<0 |x| = -x and for x>0 |x| = x ad at x = 0, |x| = 0. Use the property $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$ and
use $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$.
Complete step-by-step answer:
Observe that
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0 and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0. Using these properties evaluate $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and hence find whether $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exist or not
Here $g\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $f\left( x \right)=g(x)\cos \left( \dfrac{1}{x-1} \right)$.
We have LHL $=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,g\left( x \right)$
Using $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+\left| -h \right| \right)}{\left| -h \right|}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+h \right)}{h}$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,-h=0$
RHL $=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$
Using $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+h \right)\left( 1+\left| h \right| \right)}{\left| h \right|}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+2h+{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-1-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( -2-h \right)=-2$
Since $\text{LHL}\ne \text{RHL}$we have the limit of g(x) does not exist at x = 1.
Hence the limit of f(x) does not exist at 1.
Also since LHL of g(x) = 0, we have LHL of f(x) = 0 at x=1.
Hence $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$.
Hence option [a] is correct.
Since the RHL of g(x) is non-zero, the RHL of f(x) does not exist at x = 1. Hence option [d] is correct.
Hene options [a] and [d] are correct.
Note: [1] A limit of a function is said to be defined if and only if the Left-Hand Limit (LHL) is equal to the Right-Hand Limit(RHL),i.e. limit exists if and only if LHL = RHL.
[2] $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$
This is true because if the LHL or RHL of g(x) comes out to be non-zero, then the LHL or RHL of $g(x)\cos \left( \dfrac{1}{x-1} \right)$ will fail to exist as the latter quantity will be an oscillatory quantity. Hence either LHL or RHL will fail to exist, and hence the limit of the whole function will not exist.
use $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$.
Complete step-by-step answer:
Observe that
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0 and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exists if and only if $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ equals 0. Using these properties evaluate $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and hence find whether $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ and $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ exist or not
Here $g\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$ and $f\left( x \right)=g(x)\cos \left( \dfrac{1}{x-1} \right)$.
We have LHL $=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,g\left( x \right)$
Using $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+\left| -h \right| \right)}{\left| -h \right|}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+h \right)}{h}$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get
LHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,-h=0$
RHL $=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}$
Using $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+h \right)\left( 1+\left| h \right| \right)}{\left| h \right|}$
Using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
RHL $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+2h+{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-1-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( -2-h \right)=-2$
Since $\text{LHL}\ne \text{RHL}$we have the limit of g(x) does not exist at x = 1.
Hence the limit of f(x) does not exist at 1.
Also since LHL of g(x) = 0, we have LHL of f(x) = 0 at x=1.
Hence $\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0$.
Hence option [a] is correct.
Since the RHL of g(x) is non-zero, the RHL of f(x) does not exist at x = 1. Hence option [d] is correct.
Hene options [a] and [d] are correct.
Note: [1] A limit of a function is said to be defined if and only if the Left-Hand Limit (LHL) is equal to the Right-Hand Limit(RHL),i.e. limit exists if and only if LHL = RHL.
[2] $\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right)$ exists if and only if $\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0$
This is true because if the LHL or RHL of g(x) comes out to be non-zero, then the LHL or RHL of $g(x)\cos \left( \dfrac{1}{x-1} \right)$ will fail to exist as the latter quantity will be an oscillatory quantity. Hence either LHL or RHL will fail to exist, and hence the limit of the whole function will not exist.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
