
Let $f\left( x \right)=3x-7$ and $g\left( x \right)=-2x-6$, then how do you find the value of $\left( f\circ g \right)\left( 4 \right)$?
Answer
561.3k+ views
Hint: We start solving the problem by using the fact that $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$ to proceed finding the composite function $\left( f\circ g \right)\left( x \right)$. We then make the necessary calculations to find the function $\left( f\circ g \right)\left( x \right)$. We then substitute $x=4$ in the obtained composite function $\left( f\circ g \right)\left( x \right)$ to proceed through the problem. We then make the necessary calculations to get the required value of $\left( f\circ g \right)\left( 4 \right)$.
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=3x-7$ and $g\left( x \right)=-2x-6$. We need to find the value of $\left( f\circ g \right)\left( 4 \right)$.
Let us first find the composite function $\left( f\circ g \right)\left( x \right)$.
We know that $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$.
So, we have $\left( f\circ g \right)\left( x \right)=3\left( g\left( x \right) \right)-7$ ---(1).
Let us substitute $g\left( x \right)=-2x-6$ in equation (1).
$\Rightarrow \left( f\circ g \right)\left( x \right)=3\left( -2x-6 \right)-7$.
$\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-18-7$.
$\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-25$ ---(2).
Now, let us substitute $x=4$ in equation (2) to find the value of $\left( f\circ g \right)\left( 4 \right)$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-6\left( 4 \right)-25$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-24-25$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49$.
So, we have found the value of $\left( f\circ g \right)\left( 4 \right)$ as –49.
$\therefore $ The required value of $\left( f\circ g \right)\left( 4 \right)$ is –49.
Note:
We should not confuse $\left( f\circ g \right)\left( x \right)$ with $g\left( f\left( x \right) \right)$ instead of $f\left( g\left( x \right) \right)$, which is the common mistake done by students. We should not make calculation mistakes while solving for the composite function $\left( f\circ g \right)\left( x \right)$ as it makes us get the wrong value of $\left( f\circ g \right)\left( 4 \right)$. We can also solve the given problems as shown below:
We know that $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$.
So, we have $\left( f\circ g \right)\left( 4 \right)=f\left( g\left( 4 \right) \right)$ ---(3).
Now, let us find the value of $g\left( 4 \right)$.
So, we have $g\left( 4 \right)=-2\left( 4 \right)-6$.
$\Rightarrow g\left( 4 \right)=-8-6$.
$\Rightarrow g\left( 4 \right)=-14$ ---(4).
Let us substitute equation (4) in equation (3).
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=f\left( -14 \right)$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=3\left( -14 \right)-7$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-42-7$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49$.
So, the value of $\left( f\circ g \right)\left( 4 \right)$ is –49.
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=3x-7$ and $g\left( x \right)=-2x-6$. We need to find the value of $\left( f\circ g \right)\left( 4 \right)$.
Let us first find the composite function $\left( f\circ g \right)\left( x \right)$.
We know that $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$.
So, we have $\left( f\circ g \right)\left( x \right)=3\left( g\left( x \right) \right)-7$ ---(1).
Let us substitute $g\left( x \right)=-2x-6$ in equation (1).
$\Rightarrow \left( f\circ g \right)\left( x \right)=3\left( -2x-6 \right)-7$.
$\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-18-7$.
$\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-25$ ---(2).
Now, let us substitute $x=4$ in equation (2) to find the value of $\left( f\circ g \right)\left( 4 \right)$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-6\left( 4 \right)-25$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-24-25$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49$.
So, we have found the value of $\left( f\circ g \right)\left( 4 \right)$ as –49.
$\therefore $ The required value of $\left( f\circ g \right)\left( 4 \right)$ is –49.
Note:
We should not confuse $\left( f\circ g \right)\left( x \right)$ with $g\left( f\left( x \right) \right)$ instead of $f\left( g\left( x \right) \right)$, which is the common mistake done by students. We should not make calculation mistakes while solving for the composite function $\left( f\circ g \right)\left( x \right)$ as it makes us get the wrong value of $\left( f\circ g \right)\left( 4 \right)$. We can also solve the given problems as shown below:
We know that $\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right)$.
So, we have $\left( f\circ g \right)\left( 4 \right)=f\left( g\left( 4 \right) \right)$ ---(3).
Now, let us find the value of $g\left( 4 \right)$.
So, we have $g\left( 4 \right)=-2\left( 4 \right)-6$.
$\Rightarrow g\left( 4 \right)=-8-6$.
$\Rightarrow g\left( 4 \right)=-14$ ---(4).
Let us substitute equation (4) in equation (3).
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=f\left( -14 \right)$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=3\left( -14 \right)-7$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-42-7$.
$\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49$.
So, the value of $\left( f\circ g \right)\left( 4 \right)$ is –49.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

