
Let $f:\left[ {\dfrac{1}{2},1} \right] \to R$ (the set of all real numbers) be a positive, non-constant and differentiable function such that f’(x) < 2 f (x) and $f\left( {\dfrac{1}{2}} \right)$ = 1. Then the value of $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval
$\left( a \right)\left( {2e - 1,2e} \right)$
$\left( b \right)\left( {e - 1,2e - 1} \right)$
$\left( c \right)\left( {\dfrac{{e - 1}}{2},e - 1} \right)$
$\left( d \right)\left( {0,\dfrac{{e - 1}}{2}} \right)$
Answer
572.4k+ views
Hint: Given data:
$f:\left[ {\dfrac{1}{2},1} \right] \to R$ (The set of all real numbers) be a positive, non-constant and differentiable function.
Therefore, f (x) > 0, (because f (x) is a positive function).
Now it is given that, $f'\left( x \right) < 2f\left( x \right)$
Therefore, $f'\left( x \right) - 2f\left( x \right) < 0$.................. (1)
Now as we know that ${e^x} > 0$ and ${e^{ - x}} > 0$, $\left[ {x \in R} \right]$
So multiply ${e^{ - 2x}}$ in equation (1) we have,
$ \Rightarrow {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}} < 0$
Complete step-by-step solution:
Now as we know that $\dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) = {e^{ - 2x}}f'\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}{e^{ - 2x}} = {e^{ - 2x}}f'\left( x \right) + f\left( x \right){e^{ - 2x}}\left( { - 2} \right) = {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}}$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) < 0$
So as the first derivative of ${e^{ - 2x}}f\left( x \right)$ is less than zero, so ${e^{ - 2x}}f\left( x \right)$ is a decreasing function.
So we can say that ${e^{ - 2x}}f\left( x \right) < {\left( {{e^{ - 2x}}f\left( x \right)} \right)_{x = \dfrac{1}{2}}}$ as $f:\left[ {\dfrac{1}{2},1} \right] \to R$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 2\left( {\dfrac{1}{2}} \right)}}f\left( {\dfrac{1}{2}} \right)$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}f\left( {\dfrac{1}{2}} \right)$
Now it is given that $f\left( {\dfrac{1}{2}} \right)$ = 1, so we have,
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}$
$ \Rightarrow f\left( x \right) < \dfrac{{{e^{ - 1}}}}{{{e^{ - 2x}}}}$
$ \Rightarrow f\left( x \right) < {e^{ - 1 + 2x}}$
Now as we calculated that f (x) > 0
$ \Rightarrow 0 < f\left( x \right) < {e^{ - 1 + 2x}}$
Now integrate the above equation from ($\dfrac{1}{2}$ to 1) we have,
$ \Rightarrow \int_{\dfrac{1}{2}}^1 {0dx} < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \int_{\dfrac{1}{2}}^1 {\left( {{e^{ - 1 + 2x}}} \right)dx} $
Now integrate it using the property that integration of zero is zero, and $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2x}}}}{2}} \right]_{\dfrac{1}{2}}^1$
Now apply integrating limits we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2}}}}{2} - \dfrac{{{e^{ - 1 + 2\left( {\dfrac{1}{2}} \right)}}}}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{{{e^0}}}{2}} \right]$
Now as we know that something to the power zero is always 1, so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{1}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{e - 1}}{2}} \right]$
So, $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval, $\left( {0,\dfrac{{e - 1}}{2}} \right)$.
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property such as, $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m,\dfrac{d}{{dx}}{e^{nx}} = n{e^{nx}}$ and always recall the basic integration property such as $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant.
$f:\left[ {\dfrac{1}{2},1} \right] \to R$ (The set of all real numbers) be a positive, non-constant and differentiable function.
Therefore, f (x) > 0, (because f (x) is a positive function).
Now it is given that, $f'\left( x \right) < 2f\left( x \right)$
Therefore, $f'\left( x \right) - 2f\left( x \right) < 0$.................. (1)
Now as we know that ${e^x} > 0$ and ${e^{ - x}} > 0$, $\left[ {x \in R} \right]$
So multiply ${e^{ - 2x}}$ in equation (1) we have,
$ \Rightarrow {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}} < 0$
Complete step-by-step solution:
Now as we know that $\dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) = {e^{ - 2x}}f'\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}{e^{ - 2x}} = {e^{ - 2x}}f'\left( x \right) + f\left( x \right){e^{ - 2x}}\left( { - 2} \right) = {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}}$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) < 0$
So as the first derivative of ${e^{ - 2x}}f\left( x \right)$ is less than zero, so ${e^{ - 2x}}f\left( x \right)$ is a decreasing function.
So we can say that ${e^{ - 2x}}f\left( x \right) < {\left( {{e^{ - 2x}}f\left( x \right)} \right)_{x = \dfrac{1}{2}}}$ as $f:\left[ {\dfrac{1}{2},1} \right] \to R$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 2\left( {\dfrac{1}{2}} \right)}}f\left( {\dfrac{1}{2}} \right)$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}f\left( {\dfrac{1}{2}} \right)$
Now it is given that $f\left( {\dfrac{1}{2}} \right)$ = 1, so we have,
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}$
$ \Rightarrow f\left( x \right) < \dfrac{{{e^{ - 1}}}}{{{e^{ - 2x}}}}$
$ \Rightarrow f\left( x \right) < {e^{ - 1 + 2x}}$
Now as we calculated that f (x) > 0
$ \Rightarrow 0 < f\left( x \right) < {e^{ - 1 + 2x}}$
Now integrate the above equation from ($\dfrac{1}{2}$ to 1) we have,
$ \Rightarrow \int_{\dfrac{1}{2}}^1 {0dx} < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \int_{\dfrac{1}{2}}^1 {\left( {{e^{ - 1 + 2x}}} \right)dx} $
Now integrate it using the property that integration of zero is zero, and $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2x}}}}{2}} \right]_{\dfrac{1}{2}}^1$
Now apply integrating limits we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2}}}}{2} - \dfrac{{{e^{ - 1 + 2\left( {\dfrac{1}{2}} \right)}}}}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{{{e^0}}}{2}} \right]$
Now as we know that something to the power zero is always 1, so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{1}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{e - 1}}{2}} \right]$
So, $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval, $\left( {0,\dfrac{{e - 1}}{2}} \right)$.
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property such as, $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m,\dfrac{d}{{dx}}{e^{nx}} = n{e^{nx}}$ and always recall the basic integration property such as $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

