
Let $f:\left[ {\dfrac{1}{2},1} \right] \to R$ (the set of all real numbers) be a positive, non-constant and differentiable function such that f’(x) < 2 f (x) and $f\left( {\dfrac{1}{2}} \right)$ = 1. Then the value of $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval
$\left( a \right)\left( {2e - 1,2e} \right)$
$\left( b \right)\left( {e - 1,2e - 1} \right)$
$\left( c \right)\left( {\dfrac{{e - 1}}{2},e - 1} \right)$
$\left( d \right)\left( {0,\dfrac{{e - 1}}{2}} \right)$
Answer
573.3k+ views
Hint: Given data:
$f:\left[ {\dfrac{1}{2},1} \right] \to R$ (The set of all real numbers) be a positive, non-constant and differentiable function.
Therefore, f (x) > 0, (because f (x) is a positive function).
Now it is given that, $f'\left( x \right) < 2f\left( x \right)$
Therefore, $f'\left( x \right) - 2f\left( x \right) < 0$.................. (1)
Now as we know that ${e^x} > 0$ and ${e^{ - x}} > 0$, $\left[ {x \in R} \right]$
So multiply ${e^{ - 2x}}$ in equation (1) we have,
$ \Rightarrow {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}} < 0$
Complete step-by-step solution:
Now as we know that $\dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) = {e^{ - 2x}}f'\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}{e^{ - 2x}} = {e^{ - 2x}}f'\left( x \right) + f\left( x \right){e^{ - 2x}}\left( { - 2} \right) = {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}}$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) < 0$
So as the first derivative of ${e^{ - 2x}}f\left( x \right)$ is less than zero, so ${e^{ - 2x}}f\left( x \right)$ is a decreasing function.
So we can say that ${e^{ - 2x}}f\left( x \right) < {\left( {{e^{ - 2x}}f\left( x \right)} \right)_{x = \dfrac{1}{2}}}$ as $f:\left[ {\dfrac{1}{2},1} \right] \to R$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 2\left( {\dfrac{1}{2}} \right)}}f\left( {\dfrac{1}{2}} \right)$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}f\left( {\dfrac{1}{2}} \right)$
Now it is given that $f\left( {\dfrac{1}{2}} \right)$ = 1, so we have,
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}$
$ \Rightarrow f\left( x \right) < \dfrac{{{e^{ - 1}}}}{{{e^{ - 2x}}}}$
$ \Rightarrow f\left( x \right) < {e^{ - 1 + 2x}}$
Now as we calculated that f (x) > 0
$ \Rightarrow 0 < f\left( x \right) < {e^{ - 1 + 2x}}$
Now integrate the above equation from ($\dfrac{1}{2}$ to 1) we have,
$ \Rightarrow \int_{\dfrac{1}{2}}^1 {0dx} < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \int_{\dfrac{1}{2}}^1 {\left( {{e^{ - 1 + 2x}}} \right)dx} $
Now integrate it using the property that integration of zero is zero, and $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2x}}}}{2}} \right]_{\dfrac{1}{2}}^1$
Now apply integrating limits we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2}}}}{2} - \dfrac{{{e^{ - 1 + 2\left( {\dfrac{1}{2}} \right)}}}}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{{{e^0}}}{2}} \right]$
Now as we know that something to the power zero is always 1, so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{1}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{e - 1}}{2}} \right]$
So, $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval, $\left( {0,\dfrac{{e - 1}}{2}} \right)$.
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property such as, $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m,\dfrac{d}{{dx}}{e^{nx}} = n{e^{nx}}$ and always recall the basic integration property such as $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant.
$f:\left[ {\dfrac{1}{2},1} \right] \to R$ (The set of all real numbers) be a positive, non-constant and differentiable function.
Therefore, f (x) > 0, (because f (x) is a positive function).
Now it is given that, $f'\left( x \right) < 2f\left( x \right)$
Therefore, $f'\left( x \right) - 2f\left( x \right) < 0$.................. (1)
Now as we know that ${e^x} > 0$ and ${e^{ - x}} > 0$, $\left[ {x \in R} \right]$
So multiply ${e^{ - 2x}}$ in equation (1) we have,
$ \Rightarrow {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}} < 0$
Complete step-by-step solution:
Now as we know that $\dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) = {e^{ - 2x}}f'\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}{e^{ - 2x}} = {e^{ - 2x}}f'\left( x \right) + f\left( x \right){e^{ - 2x}}\left( { - 2} \right) = {e^{ - 2x}}f'\left( x \right) - 2f\left( x \right){e^{ - 2x}}$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{ - 2x}}f\left( x \right) < 0$
So as the first derivative of ${e^{ - 2x}}f\left( x \right)$ is less than zero, so ${e^{ - 2x}}f\left( x \right)$ is a decreasing function.
So we can say that ${e^{ - 2x}}f\left( x \right) < {\left( {{e^{ - 2x}}f\left( x \right)} \right)_{x = \dfrac{1}{2}}}$ as $f:\left[ {\dfrac{1}{2},1} \right] \to R$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 2\left( {\dfrac{1}{2}} \right)}}f\left( {\dfrac{1}{2}} \right)$
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}f\left( {\dfrac{1}{2}} \right)$
Now it is given that $f\left( {\dfrac{1}{2}} \right)$ = 1, so we have,
$ \Rightarrow {e^{ - 2x}}f\left( x \right) < {e^{ - 1}}$
$ \Rightarrow f\left( x \right) < \dfrac{{{e^{ - 1}}}}{{{e^{ - 2x}}}}$
$ \Rightarrow f\left( x \right) < {e^{ - 1 + 2x}}$
Now as we calculated that f (x) > 0
$ \Rightarrow 0 < f\left( x \right) < {e^{ - 1 + 2x}}$
Now integrate the above equation from ($\dfrac{1}{2}$ to 1) we have,
$ \Rightarrow \int_{\dfrac{1}{2}}^1 {0dx} < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \int_{\dfrac{1}{2}}^1 {\left( {{e^{ - 1 + 2x}}} \right)dx} $
Now integrate it using the property that integration of zero is zero, and $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2x}}}}{2}} \right]_{\dfrac{1}{2}}^1$
Now apply integrating limits we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{{e^{ - 1 + 2}}}}{2} - \dfrac{{{e^{ - 1 + 2\left( {\dfrac{1}{2}} \right)}}}}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{{{e^0}}}{2}} \right]$
Now as we know that something to the power zero is always 1, so we have,
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{e}{2} - \dfrac{1}{2}} \right]$
$ \Rightarrow 0 < \int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} < \left[ {\dfrac{{e - 1}}{2}} \right]$
So, $\int_{\dfrac{1}{2}}^1 {f\left( x \right)dx} $ lies in the interval, $\left( {0,\dfrac{{e - 1}}{2}} \right)$.
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property such as, $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m,\dfrac{d}{{dx}}{e^{nx}} = n{e^{nx}}$ and always recall the basic integration property such as $\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + c$, where C is some integration constant.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

