
Let f, g, h be real functions given by \[f\left( x \right) = \sin x\], \[g\left( x \right) = 2x\] and \[h\left( x \right) = \cos x\].Prove that \[fog = go\left( {fh} \right)\].
Answer
486.9k+ views
Hint: According to the question, calculate the domain using the function \[f\left( x \right),g\left( x \right)\] and \[h\left( x \right)\] . So, that all the domains are real and hence using them we can calculate \[fog\] and \[go\left( {fh} \right)\] and verify that they are equal or not.
Formula used:
Here, we use the formula \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\] .
Complete step-by-step answer:
It is given that \[f\left( x \right) = \sin x\], \[g\left( x \right) = 2x\] and \[h\left( x \right) = \cos x\].
As we know,
f: \[\;R{\rm{ }} \to {\rm{ }}\left[ { - 1,\;1} \right]\;\] and g: \[R{\rm{ }} \to {\rm{ }}R\]
As it is clear that, the range of g is a subset of the domain of f.
So, fog: \[R{\rm{ }} \to {\rm{ }}R\]
Now, \[\left( {fh} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( x \right){\rm{ }}h\left( x \right)\;\]
Put the values of \[f\left( x \right)\] and \[h\left( x \right)\] in the above equation.
So, we get \[ = \left( {\cos x} \right)\left( {\sin x} \right)\]
Multiply and divide with 2.
\[ = \dfrac{2}{2}\left( {\cos x} \right)\left( {\sin x} \right)\]
Here, we use the identity \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\].
So, we get \[ = \dfrac{1}{2}\sin 2x\].
So, the domain of fh is R.
Since range of \[\sin x\] is \[\left[ { - 1,{\rm{ }}1} \right],{\rm{ }} - 1\; \le \;sin\;2x\; \le \;1\]
On further simplifying we get,
\[ \Rightarrow - \dfrac{1}{2} \le sin\dfrac{x}{2}{\rm{ }} \le \dfrac{1}{2}\]
Hence, the Range of fh = \[\left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]\]
Therefore, (fh): \[R\; \to \left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]\]
As it is clear from above, the range of fh is a subset of g.
So, \[ \Rightarrow go\left( {fh} \right):\;R\; \to \;R\]
Hence, Domains of fog and go(fh) are the same.
So, here we calculate \[\left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\;\]
By Putting the value g(x) in above we get,
\[ \Rightarrow f\left( {2x} \right)\]
As, \[f\left( x \right) = \sin x\]
Therefore, \[\left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\;\] \[ \Rightarrow \sin \left( {2x} \right)\]
And we also calculate \[\left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;\]
By Putting the value \[fh\left( x \right) = \sin x\cos x\]in above we get,
\[ \Rightarrow g\left( {\sin x\cos x} \right)\]
As, \[g\left( x \right) = 2x\]
So, we get \[ \Rightarrow 2\sin x\cos x\]
By using the identity \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\]
Therefore, \[\left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;\]\[ \Rightarrow \sin \left( {2x} \right)\]
Hence, it is clear \[fog\; = \;go\left( {fh} \right)\] .
Note: To solve these types of questions, we use f of g which means putting function g in function f(x). These types of problems can use chaining which means using multiple functions in functions a clear example of that is f(g((x))). We can also use the identities to solve the functions.
Formula used:
Here, we use the formula \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\] .
Complete step-by-step answer:
It is given that \[f\left( x \right) = \sin x\], \[g\left( x \right) = 2x\] and \[h\left( x \right) = \cos x\].
As we know,
f: \[\;R{\rm{ }} \to {\rm{ }}\left[ { - 1,\;1} \right]\;\] and g: \[R{\rm{ }} \to {\rm{ }}R\]
As it is clear that, the range of g is a subset of the domain of f.
So, fog: \[R{\rm{ }} \to {\rm{ }}R\]
Now, \[\left( {fh} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( x \right){\rm{ }}h\left( x \right)\;\]
Put the values of \[f\left( x \right)\] and \[h\left( x \right)\] in the above equation.
So, we get \[ = \left( {\cos x} \right)\left( {\sin x} \right)\]
Multiply and divide with 2.
\[ = \dfrac{2}{2}\left( {\cos x} \right)\left( {\sin x} \right)\]
Here, we use the identity \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\].
So, we get \[ = \dfrac{1}{2}\sin 2x\].
So, the domain of fh is R.
Since range of \[\sin x\] is \[\left[ { - 1,{\rm{ }}1} \right],{\rm{ }} - 1\; \le \;sin\;2x\; \le \;1\]
On further simplifying we get,
\[ \Rightarrow - \dfrac{1}{2} \le sin\dfrac{x}{2}{\rm{ }} \le \dfrac{1}{2}\]
Hence, the Range of fh = \[\left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]\]
Therefore, (fh): \[R\; \to \left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]\]
As it is clear from above, the range of fh is a subset of g.
So, \[ \Rightarrow go\left( {fh} \right):\;R\; \to \;R\]
Hence, Domains of fog and go(fh) are the same.
So, here we calculate \[\left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\;\]
By Putting the value g(x) in above we get,
\[ \Rightarrow f\left( {2x} \right)\]
As, \[f\left( x \right) = \sin x\]
Therefore, \[\left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\;\] \[ \Rightarrow \sin \left( {2x} \right)\]
And we also calculate \[\left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;\]
By Putting the value \[fh\left( x \right) = \sin x\cos x\]in above we get,
\[ \Rightarrow g\left( {\sin x\cos x} \right)\]
As, \[g\left( x \right) = 2x\]
So, we get \[ \Rightarrow 2\sin x\cos x\]
By using the identity \[{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x\]
Therefore, \[\left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;\]\[ \Rightarrow \sin \left( {2x} \right)\]
Hence, it is clear \[fog\; = \;go\left( {fh} \right)\] .
Note: To solve these types of questions, we use f of g which means putting function g in function f(x). These types of problems can use chaining which means using multiple functions in functions a clear example of that is f(g((x))). We can also use the identities to solve the functions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE
