
Let f be differentiable function from R to R such that $\left| f\left( x \right)-f\left( y \right) \right|\le 2{{\left| x-y \right|}^{\dfrac{3}{2}}}$ , for all $x,y\in R$. If $f\left( 0 \right)=1$ then find $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$
Answer
512.1k+ views
Hint: We start solving this problem by dividing both sides of the given inequality by \[\left| x-y \right|\] . After dividing the both sides of the inequality by \[\left| x-y \right|\], we get a new inequality. Then we apply the formula $$\displaystyle \lim_{h \to 0}$$ $\dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-x}={f}'\left( x \right)$ . Then we find the function $f\left( x \right)$ . By squaring it, we get ${{f}^{2}}\left( x \right)$ , then we find the value of $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$.
Complete step-by-step answer:
Let us consider the given inequality, $\left| f\left( x \right)-f\left( y \right) \right|\le 2{{\left| x-y \right|}^{\dfrac{3}{2}}}$
Now we divide both the sides of the above inequality by \[\left| x-y \right|\], we get,
$\dfrac{\left| f\left( x \right)-f\left( y \right) \right|}{\left| x-y \right|}\le 2{{\left| x-y \right|}^{\dfrac{3}{2}}}$
Let us apply limits on both the sides of the above obtained inequality, we get,
$$\displaystyle \lim_{x \to y}$$ \[\left| \dfrac{f\left( x \right)-f\left( y \right)}{x-y} \right|\le \displaystyle \lim_{x \to y},2{{\left| x-y \right|}^{\dfrac{3}{2}}}..................\left( 1 \right)\]
Now, let us consider the formula $$\displaystyle \lim_{h \to 0}$$ $\dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-x}={f}'\left( x \right)$
Applying the above formula to equation (1), we get,
\[\begin{align}
& \underset{x\to y}{\mathop{\lim }}\,\left| \dfrac{f\left( x \right)-f\left( y \right)}{x-y} \right|\le \underset{x\to y}{\mathop{\lim }}\,2{{\left| x-y \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 2{{\left| y-y \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 2{{\left| 0 \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 0 \\
\end{align}\]
As \[\left| {f}'\left( y \right) \right|\] is always non-negative, because a modulus of any number is positive, we get\[{f}'\left( y \right)=0\] for any real number y.
Let us consider the known theorem that if $f\left( x \right)$ is a constant function, then ${f}'\left( x \right)=0$ and vice-versa.
By using the above theorem, we get,
$f\left( y \right)=K$ , where K is some constant.
So, we get,
$f\left( x \right)=K$
We were given that $f\left( 0 \right)=1$.
So, we get,
$f\left( x \right)=1$ as $f\left( x \right)$ is a constant function.
Now, we find ${{f}^{2}}\left( x \right)$ by squaring the function $f\left( x \right)=1$ on both sides, we get
$\begin{align}
& {{f}^{2}}\left( x \right)={{1}^{2}} \\
& \Rightarrow {{f}^{2}}\left( x \right)=1 \\
\end{align}$
Now, we were asked to find the value of $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$
So, let us consider $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$,
$\begin{align}
& \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\int\limits_{0}^{1}{\left( 1 \right)dx} \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\left[ x+C \right]_{0}^{1} \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\left[ \left( 1+C \right)-\left( 0+C \right) \right] \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1+C-0-C \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1 \\
\end{align}$
Therefore, $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1$
Hence, the answer is 1.
Note: The possibility of making mistakes in this problem is one may confuse what limits to be taken while applying limits to the given inequality. One may also make a mistake by considering ${{f}^{2}}\left( x \right)$ as the second derivative of $f\left( x \right)$ . So, one must know the difference between the terms ${{f}^{2}}\left( x \right)$ and ${f}''\left( x \right)$ .
Complete step-by-step answer:
Let us consider the given inequality, $\left| f\left( x \right)-f\left( y \right) \right|\le 2{{\left| x-y \right|}^{\dfrac{3}{2}}}$
Now we divide both the sides of the above inequality by \[\left| x-y \right|\], we get,
$\dfrac{\left| f\left( x \right)-f\left( y \right) \right|}{\left| x-y \right|}\le 2{{\left| x-y \right|}^{\dfrac{3}{2}}}$
Let us apply limits on both the sides of the above obtained inequality, we get,
$$\displaystyle \lim_{x \to y}$$ \[\left| \dfrac{f\left( x \right)-f\left( y \right)}{x-y} \right|\le \displaystyle \lim_{x \to y},2{{\left| x-y \right|}^{\dfrac{3}{2}}}..................\left( 1 \right)\]
Now, let us consider the formula $$\displaystyle \lim_{h \to 0}$$ $\dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-x}={f}'\left( x \right)$
Applying the above formula to equation (1), we get,
\[\begin{align}
& \underset{x\to y}{\mathop{\lim }}\,\left| \dfrac{f\left( x \right)-f\left( y \right)}{x-y} \right|\le \underset{x\to y}{\mathop{\lim }}\,2{{\left| x-y \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 2{{\left| y-y \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 2{{\left| 0 \right|}^{\dfrac{3}{2}}} \\
& \\
& \Rightarrow \left| {f}'\left( y \right) \right|\le 0 \\
\end{align}\]
As \[\left| {f}'\left( y \right) \right|\] is always non-negative, because a modulus of any number is positive, we get\[{f}'\left( y \right)=0\] for any real number y.
Let us consider the known theorem that if $f\left( x \right)$ is a constant function, then ${f}'\left( x \right)=0$ and vice-versa.
By using the above theorem, we get,
$f\left( y \right)=K$ , where K is some constant.
So, we get,
$f\left( x \right)=K$
We were given that $f\left( 0 \right)=1$.
So, we get,
$f\left( x \right)=1$ as $f\left( x \right)$ is a constant function.
Now, we find ${{f}^{2}}\left( x \right)$ by squaring the function $f\left( x \right)=1$ on both sides, we get
$\begin{align}
& {{f}^{2}}\left( x \right)={{1}^{2}} \\
& \Rightarrow {{f}^{2}}\left( x \right)=1 \\
\end{align}$
Now, we were asked to find the value of $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$
So, let us consider $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}$,
$\begin{align}
& \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\int\limits_{0}^{1}{\left( 1 \right)dx} \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\left[ x+C \right]_{0}^{1} \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=\left[ \left( 1+C \right)-\left( 0+C \right) \right] \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1+C-0-C \\
& \\
& \Rightarrow \int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1 \\
\end{align}$
Therefore, $\int\limits_{0}^{1}{{{f}^{2}}\left( x \right)dx}=1$
Hence, the answer is 1.
Note: The possibility of making mistakes in this problem is one may confuse what limits to be taken while applying limits to the given inequality. One may also make a mistake by considering ${{f}^{2}}\left( x \right)$ as the second derivative of $f\left( x \right)$ . So, one must know the difference between the terms ${{f}^{2}}\left( x \right)$ and ${f}''\left( x \right)$ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
