
Let f be a real valued function defined on the interval (-1, 1) such that ${e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} $, for all $x \in \left( { - 1,1} \right)$ and let ${f^{ - 1}}$ be the inverse function of $f$. Then ${\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right)$ is equal to
$\left( a \right)$ 1
$\left( b \right)$ 1/3
$\left( c \right)$ 1/2
$\left( d \right)$ 1/e
Answer
591.3k+ views
Hint: In this particular question use the concept that inverse function is a function that reverses another function so if ${f^{ - 1}}$ be the inverse function of $f$, then $f\left( {{f^{ - 1}}\left( x \right)} \right)$ = x, then differentiate both sides w.r.t. x to calculate the value of f’ (x) in terms of h’ (f (x)), so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given data:
Let f be a real valued function defined on the interval (-1, 1), such that ${e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} $, for all $x \in \left( { - 1,1} \right)$ and let${f^{ - 1}}$ be the inverse function of $f$.
So if ${f^{ - 1}}$ be the inverse function of $f$, then $f\left( {{f^{ - 1}}\left( x \right)} \right)$ = x............... (1)
Now differentiate the above equation w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( {{f^{ - 1}}\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1$, so use this property in the above equation we have,
$ \Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right)\dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = 1$
\[ \Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right){\left( {{f^{ - 1}}\left( x \right)} \right)^\prime } = 1\], $\left[ {\because \dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = {{\left( {{f^{ - 1}}\left( x \right)} \right)}^\prime }} \right]$
Now substitute in place of x, 2 we have,
\[ \Rightarrow f'\left( {{f^{ - 1}}\left( 2 \right)} \right){\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = 1\]
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( {{f^{ - 1}}\left( 2 \right)} \right)}}\].................. (2)
Now it is given that,
${e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} $................. (3)
Now putting x = 0 in the above equation we have,
$ \Rightarrow {e^{ - 0}}f\left( 0 \right) = 2 + \int_0^0 {\sqrt {{t^4} + 1} dt} $
Now as we know that $\int_0^0 {f\left( t \right)dt = 0,{e^{ - 0}} = 1} $
$ \Rightarrow f\left( 0 \right) = 2$................ (4)
Now from equation (1) and (4) we have,
$f\left( {{f^{ - 1}}\left( x \right)} \right)$= x, $f\left( 0 \right) = 2$
So on comparing, ${f^{ - 1}}\left( 2 \right) = 0$
Now substitute this value in equation (2) we have,
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( 0 \right)}}\]............. (5)
Now differentiate equation (3) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = \dfrac{d}{{dx}}\left( {2 + \int_0^x {\sqrt {{t^4} + 1} dt} } \right)$
Now as we know that $\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}}$, $\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}}$ and the differentiation of constant term is zero, so use these properties in the above equation we have,
$ \Rightarrow \left[ {{e^{ - x}}f'\left( x \right) + f\left( x \right)\left( { - {e^{ - x}}} \right)} \right] = \left( {0 + {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = x}} - {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = 0}}} \right)$
$ \Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1} - 0$
$ \Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1} $
Now substitute in place of x, 0 we have,
$ \Rightarrow {e^{ - 0}}f'\left( 0 \right) - f\left( 0 \right){e^{ - 0}} = \sqrt {{0^4} + 1} $
$ \Rightarrow f'\left( 0 \right) - f\left( 0 \right) = 1$
Now from equation (4), f (0) = 2, so we have,
$ \Rightarrow f'\left( 0 \right) - 2 = 1$
$ \Rightarrow f'\left( 0 \right) = 1 + 2 = 3$
Now substitute this value in equation (5) we have,
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{3}\]
\[ \Rightarrow {\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right) = \dfrac{1}{3}\]
So this is the required answer.
Hence option (b) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as $\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1$, $\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}}$,$\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}}$so differentiate the equation (1) by using first property and equation (3) by using second properties and then substitute the values as above we will get the required value of \[{\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right)\].
Complete step-by-step answer:
Given data:
Let f be a real valued function defined on the interval (-1, 1), such that ${e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} $, for all $x \in \left( { - 1,1} \right)$ and let${f^{ - 1}}$ be the inverse function of $f$.
So if ${f^{ - 1}}$ be the inverse function of $f$, then $f\left( {{f^{ - 1}}\left( x \right)} \right)$ = x............... (1)
Now differentiate the above equation w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( {{f^{ - 1}}\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1$, so use this property in the above equation we have,
$ \Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right)\dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = 1$
\[ \Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right){\left( {{f^{ - 1}}\left( x \right)} \right)^\prime } = 1\], $\left[ {\because \dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = {{\left( {{f^{ - 1}}\left( x \right)} \right)}^\prime }} \right]$
Now substitute in place of x, 2 we have,
\[ \Rightarrow f'\left( {{f^{ - 1}}\left( 2 \right)} \right){\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = 1\]
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( {{f^{ - 1}}\left( 2 \right)} \right)}}\].................. (2)
Now it is given that,
${e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} $................. (3)
Now putting x = 0 in the above equation we have,
$ \Rightarrow {e^{ - 0}}f\left( 0 \right) = 2 + \int_0^0 {\sqrt {{t^4} + 1} dt} $
Now as we know that $\int_0^0 {f\left( t \right)dt = 0,{e^{ - 0}} = 1} $
$ \Rightarrow f\left( 0 \right) = 2$................ (4)
Now from equation (1) and (4) we have,
$f\left( {{f^{ - 1}}\left( x \right)} \right)$= x, $f\left( 0 \right) = 2$
So on comparing, ${f^{ - 1}}\left( 2 \right) = 0$
Now substitute this value in equation (2) we have,
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( 0 \right)}}\]............. (5)
Now differentiate equation (3) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = \dfrac{d}{{dx}}\left( {2 + \int_0^x {\sqrt {{t^4} + 1} dt} } \right)$
Now as we know that $\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}}$, $\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}}$ and the differentiation of constant term is zero, so use these properties in the above equation we have,
$ \Rightarrow \left[ {{e^{ - x}}f'\left( x \right) + f\left( x \right)\left( { - {e^{ - x}}} \right)} \right] = \left( {0 + {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = x}} - {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = 0}}} \right)$
$ \Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1} - 0$
$ \Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1} $
Now substitute in place of x, 0 we have,
$ \Rightarrow {e^{ - 0}}f'\left( 0 \right) - f\left( 0 \right){e^{ - 0}} = \sqrt {{0^4} + 1} $
$ \Rightarrow f'\left( 0 \right) - f\left( 0 \right) = 1$
Now from equation (4), f (0) = 2, so we have,
$ \Rightarrow f'\left( 0 \right) - 2 = 1$
$ \Rightarrow f'\left( 0 \right) = 1 + 2 = 3$
Now substitute this value in equation (5) we have,
\[ \Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{3}\]
\[ \Rightarrow {\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right) = \dfrac{1}{3}\]
So this is the required answer.
Hence option (b) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as $\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1$, $\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}}$,$\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}}$so differentiate the equation (1) by using first property and equation (3) by using second properties and then substitute the values as above we will get the required value of \[{\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right)\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

