
Let f be a real valued function defined on the interval $\left( {0,\infty } \right)$ by $f\left( x \right) = \ln x + \int_0^x {\sqrt {1 + \sin t} dt} $, then which of the following statement(s) is(are) true?
$\left( a \right)f''\left( x \right)$ exists for all $x \in \left( {0,\infty } \right)$
$\left( b \right)$ f (x) exists for all $x \in \left( {0,\infty } \right)$ and f’ is continuous on $\left( {0,\infty } \right)$, but not differentiable on $\left( {0,\infty } \right)$
$\left( c \right)$ There exists a > 1 such that $\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$ for all $x \in \left( {a,\infty } \right)$
$\left( d \right)$ There exists $\beta > 0$ such that $\left| {f'\left( x \right)} \right| + \left| {f\left( x \right)} \right| \leqslant \beta $ for all $x \in \left( {0,\infty } \right)$
Answer
587.7k+ views
Hint: In this particular question use the concept that if the function is defined in the given interval than it is continuous in that interval and use the concept that if the left-hand derivative is not equal to the right-hand derivative than function is not differentiable in the given interval and use that $ - 1 \leqslant \sin x \leqslant 1$ so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given data:
$f\left( x \right)$ be a real valued function defined on the interval $\left( {0,\infty } \right)$ by $f\left( x \right) = \ln x + \int_0^x {\sqrt {1 + \sin t} dt} $
Option (b)
So, f (x) should be continuous in the interval $\left( {0,\infty } \right)$.
Now as we know that $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so according to this property differentiate the given equation we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\ln x + \int_0^x {\sqrt {1 + \sin t} dt} } \right)$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{1}{x} + {\left( {\sqrt {1 + \sin t} } \right)_{t = x}} - {\left( {\sqrt {1 + \sin t} } \right)_{t = 0}}$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{1}{x} + \left( {\sqrt {1 + \sin x} } \right) - \left( {\sqrt {1 + \sin 0} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{x} + \sqrt {1 + \sin x} - 1$.............. (1)
Now as we all know that $\sqrt x = \pm \sqrt x $
So, $\sqrt {1 + \sin x} = \pm \sqrt {1 + \sin x} $
So if we take left hand derivative, $\sqrt {1 + \sin x} = - \sqrt {1 + \sin x} $ in the interval $\left( {0,\infty } \right)$ and if we take right hand derivative, $\sqrt {1 + \sin x} = + \sqrt {1 + \sin x} $ in the interval $\left( {0,\infty } \right)$
So LHD $ \ne $ RHD so f (x) is not differentiable in the interval $\left( {0,\infty } \right)$.
Hence option (b) is correct.
Option (a)
Now again differentiate equation (1) we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right)$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}\sqrt {g\left( x \right)} = \dfrac{1}{{2\sqrt {g\left( x \right)} }}\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}\sin x = \cos x$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \left( {\dfrac{{ - 1}}{{{x^2}}} + \dfrac{1}{{2\sqrt {1 + \sin x} }}\dfrac{d}{{dx}}\left( {1 + \sin x} \right) - 0} \right)$
$ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{{x^2}}} + \dfrac{{\cos x}}{{2\sqrt {1 + \sin x} }}} \right)$
Now in the interval $\left( {0,\infty } \right)$ at a particular value the value of sin x = -1, so $\sqrt {1 + \sin x} = 0$
$ \Rightarrow \dfrac{1}{{\sqrt {1 + \sin x} }}$ is not defined in the interval $\left( {0,\infty } \right)$.
So f”(x) is not differentiable in the interval $\left( {0,\infty } \right)$.
Hence option (a) is false.
Option (c) There exists a > 1 such that $\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$ for all $x \in \left( {a,\infty } \right)$
$ \Rightarrow \left| {f\left( x \right)} \right| - \left| {f'\left( x \right)} \right| > 0$
Now substitute the values we have,
$ \Rightarrow \left| {\ln x + \int_0^x {\sqrt {1 + \sin t} dt} } \right| - \left| {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right| > 0$
Now as we know that $ - 1 \leqslant \sin x \leqslant 1$ so the maximum value of $\left| {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right| = \sqrt 2 $
So in the interval there exists a value a > 1, such that $\left| {f\left( x \right)} \right| - \left| {f'\left( x \right)} \right| > 0$
Therefore, $\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$ for all $x \in \left( {a,\infty } \right)$
So option (c) is also correct.
Option (d) There exists $\beta > 0$ such that $\left| {f'\left( x \right)} \right| + \left| {f\left( x \right)} \right| \leqslant \beta $ for all $x \in \left( {0,\infty } \right)$
Now as we see that f (x) is an increasing function in the interval $x \in \left( {0,\infty } \right)$ whereas f’(x) is a bounded curve (I.e. not increasing function) in the interval $x \in \left( {0,\infty } \right)$, so after a certain value $\beta > 0$, f (x) dominating f’(x) in the interval $x \in \left( {0,\infty } \right)$.
So, $\left| {f'\left( x \right)} \right| + \left| {f\left( x \right)} \right| \geqslant \beta $, for $\beta > 0$ and $x \in \left( {0,\infty } \right)$.
Hence option (d) is also incorrect.
Hence options (b) and (c) are the correct answers.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic property that how to differentiate the definite integral which is given as $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so simply apply this property as above applied.
Complete step-by-step solution:
Given data:
$f\left( x \right)$ be a real valued function defined on the interval $\left( {0,\infty } \right)$ by $f\left( x \right) = \ln x + \int_0^x {\sqrt {1 + \sin t} dt} $
Option (b)
So, f (x) should be continuous in the interval $\left( {0,\infty } \right)$.
Now as we know that $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so according to this property differentiate the given equation we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\ln x + \int_0^x {\sqrt {1 + \sin t} dt} } \right)$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{1}{x} + {\left( {\sqrt {1 + \sin t} } \right)_{t = x}} - {\left( {\sqrt {1 + \sin t} } \right)_{t = 0}}$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{1}{x} + \left( {\sqrt {1 + \sin x} } \right) - \left( {\sqrt {1 + \sin 0} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{x} + \sqrt {1 + \sin x} - 1$.............. (1)
Now as we all know that $\sqrt x = \pm \sqrt x $
So, $\sqrt {1 + \sin x} = \pm \sqrt {1 + \sin x} $
So if we take left hand derivative, $\sqrt {1 + \sin x} = - \sqrt {1 + \sin x} $ in the interval $\left( {0,\infty } \right)$ and if we take right hand derivative, $\sqrt {1 + \sin x} = + \sqrt {1 + \sin x} $ in the interval $\left( {0,\infty } \right)$
So LHD $ \ne $ RHD so f (x) is not differentiable in the interval $\left( {0,\infty } \right)$.
Hence option (b) is correct.
Option (a)
Now again differentiate equation (1) we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right)$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}\sqrt {g\left( x \right)} = \dfrac{1}{{2\sqrt {g\left( x \right)} }}\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}\sin x = \cos x$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \left( {\dfrac{{ - 1}}{{{x^2}}} + \dfrac{1}{{2\sqrt {1 + \sin x} }}\dfrac{d}{{dx}}\left( {1 + \sin x} \right) - 0} \right)$
$ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{{x^2}}} + \dfrac{{\cos x}}{{2\sqrt {1 + \sin x} }}} \right)$
Now in the interval $\left( {0,\infty } \right)$ at a particular value the value of sin x = -1, so $\sqrt {1 + \sin x} = 0$
$ \Rightarrow \dfrac{1}{{\sqrt {1 + \sin x} }}$ is not defined in the interval $\left( {0,\infty } \right)$.
So f”(x) is not differentiable in the interval $\left( {0,\infty } \right)$.
Hence option (a) is false.
Option (c) There exists a > 1 such that $\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$ for all $x \in \left( {a,\infty } \right)$
$ \Rightarrow \left| {f\left( x \right)} \right| - \left| {f'\left( x \right)} \right| > 0$
Now substitute the values we have,
$ \Rightarrow \left| {\ln x + \int_0^x {\sqrt {1 + \sin t} dt} } \right| - \left| {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right| > 0$
Now as we know that $ - 1 \leqslant \sin x \leqslant 1$ so the maximum value of $\left| {\dfrac{1}{x} + \sqrt {1 + \sin x} - 1} \right| = \sqrt 2 $
So in the interval there exists a value a > 1, such that $\left| {f\left( x \right)} \right| - \left| {f'\left( x \right)} \right| > 0$
Therefore, $\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$ for all $x \in \left( {a,\infty } \right)$
So option (c) is also correct.
Option (d) There exists $\beta > 0$ such that $\left| {f'\left( x \right)} \right| + \left| {f\left( x \right)} \right| \leqslant \beta $ for all $x \in \left( {0,\infty } \right)$
Now as we see that f (x) is an increasing function in the interval $x \in \left( {0,\infty } \right)$ whereas f’(x) is a bounded curve (I.e. not increasing function) in the interval $x \in \left( {0,\infty } \right)$, so after a certain value $\beta > 0$, f (x) dominating f’(x) in the interval $x \in \left( {0,\infty } \right)$.
So, $\left| {f'\left( x \right)} \right| + \left| {f\left( x \right)} \right| \geqslant \beta $, for $\beta > 0$ and $x \in \left( {0,\infty } \right)$.
Hence option (d) is also incorrect.
Hence options (b) and (c) are the correct answers.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic property that how to differentiate the definite integral which is given as $\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}$ so simply apply this property as above applied.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

