
Let f be a non-negative function defined on the interval [0, 1]. If \[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt,0 \leqslant x \leqslant 1} \] and f(0) = 0, then-
$
{\text{A}}{\text{. f}}\left( {\dfrac{1}{2}} \right) < \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) > \dfrac{1}{3} \\
{\text{B}}{\text{. f}}\left( {\dfrac{1}{2}} \right) > \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) > \dfrac{1}{3} \\
{\text{C}}{\text{. f}}\left( {\dfrac{1}{2}} \right) < \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{D}}{\text{. f}}\left( {\dfrac{1}{2}} \right) > \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
$
Answer
589.5k+ views
Hint: Here in the given question we have to Use Leibnitz’s rule and differentiate the expression. Find f(x) and then take use of standard inequalities, accordingly to reach the answer.
Complete step-by-step answer:
We are given with-
\[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt} \]
According to the Leibnitz rule-
$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$
Accordingly,
$
\dfrac{{d(\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt)} }}{{dx}} = \dfrac{{d(\int\limits_0^x {f\left( t \right)dt} )}}{{dx}} \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} .\left( 1 \right) - 0 = f\left( x \right).\left( 1 \right) - 0 \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} = f\left( x \right) \\
1 - {\left( {f'\left( x \right)} \right)^2} = {(f\left( x \right))^2} \\
1 - {\left( {f\left( x \right)} \right)^2} = {\left( {f'\left( x \right)} \right)^2} \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = f'\left( x \right) \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = \dfrac{{d(f\left( x \right))}}{{dx}} \\
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
$
Consider f(x) as t and then integrate both sides-
$
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
dx = \pm \dfrac{{d(t)}}{{\sqrt {1 - {{\left( t \right)}^2}} }} \\
\int {dx} = \pm \int {\dfrac{{d(t)}}{{\sqrt {1 - {t^2}} }}} \\
x + C = \pm {\sin ^{ - 1}}\left( t \right) \\
\because t = f\left( x \right) \\
x + C = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
$
It is given that- f(0) = 0
Substituting x=0,
$
0 + C = \pm {\sin ^{ - 1}}\left( {f\left( 0 \right)} \right) \\
C = \pm {\sin ^{ - 1}}\left( 0 \right) \\
C = 0 \\
x = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
\pm \sin \left( x \right) = f\left( x \right) \\
$
As it has been given that f(x) is a non-negative function in [0, 1]
$\sin \left( x \right) = f\left( x \right)$
From standard equalities we know that,
$\sin x < x,x \in {R^ + }$
$
\sin \left( {\dfrac{1}{2}} \right) < \dfrac{1}{2} \\
\sin \left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{As both }}\dfrac{1}{2}{\text{ and }}\dfrac{1}{3}{\text{ are lying }}\left[ {0,1} \right] \\
$
The correct option is C.
Note: Whenever we get this type of question the key concept of solving is we have to understand According to the Leibnitz rule-$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$ . and we should have also remembered formulae of integration.
Complete step-by-step answer:
We are given with-
\[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt} \]
According to the Leibnitz rule-
$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$
Accordingly,
$
\dfrac{{d(\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt)} }}{{dx}} = \dfrac{{d(\int\limits_0^x {f\left( t \right)dt} )}}{{dx}} \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} .\left( 1 \right) - 0 = f\left( x \right).\left( 1 \right) - 0 \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} = f\left( x \right) \\
1 - {\left( {f'\left( x \right)} \right)^2} = {(f\left( x \right))^2} \\
1 - {\left( {f\left( x \right)} \right)^2} = {\left( {f'\left( x \right)} \right)^2} \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = f'\left( x \right) \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = \dfrac{{d(f\left( x \right))}}{{dx}} \\
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
$
Consider f(x) as t and then integrate both sides-
$
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
dx = \pm \dfrac{{d(t)}}{{\sqrt {1 - {{\left( t \right)}^2}} }} \\
\int {dx} = \pm \int {\dfrac{{d(t)}}{{\sqrt {1 - {t^2}} }}} \\
x + C = \pm {\sin ^{ - 1}}\left( t \right) \\
\because t = f\left( x \right) \\
x + C = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
$
It is given that- f(0) = 0
Substituting x=0,
$
0 + C = \pm {\sin ^{ - 1}}\left( {f\left( 0 \right)} \right) \\
C = \pm {\sin ^{ - 1}}\left( 0 \right) \\
C = 0 \\
x = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
\pm \sin \left( x \right) = f\left( x \right) \\
$
As it has been given that f(x) is a non-negative function in [0, 1]
$\sin \left( x \right) = f\left( x \right)$
From standard equalities we know that,
$\sin x < x,x \in {R^ + }$
$
\sin \left( {\dfrac{1}{2}} \right) < \dfrac{1}{2} \\
\sin \left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{As both }}\dfrac{1}{2}{\text{ and }}\dfrac{1}{3}{\text{ are lying }}\left[ {0,1} \right] \\
$
The correct option is C.
Note: Whenever we get this type of question the key concept of solving is we have to understand According to the Leibnitz rule-$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$ . and we should have also remembered formulae of integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

