
Let f be a non-negative function defined on the interval [0, 1]. If \[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt,0 \leqslant x \leqslant 1} \] and f(0) = 0, then-
$
{\text{A}}{\text{. f}}\left( {\dfrac{1}{2}} \right) < \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) > \dfrac{1}{3} \\
{\text{B}}{\text{. f}}\left( {\dfrac{1}{2}} \right) > \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) > \dfrac{1}{3} \\
{\text{C}}{\text{. f}}\left( {\dfrac{1}{2}} \right) < \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{D}}{\text{. f}}\left( {\dfrac{1}{2}} \right) > \dfrac{1}{2}{\text{ and f}}\left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
$
Answer
510.6k+ views
Hint: Here in the given question we have to Use Leibnitz’s rule and differentiate the expression. Find f(x) and then take use of standard inequalities, accordingly to reach the answer.
Complete step-by-step answer:
We are given with-
\[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt} \]
According to the Leibnitz rule-
$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$
Accordingly,
$
\dfrac{{d(\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt)} }}{{dx}} = \dfrac{{d(\int\limits_0^x {f\left( t \right)dt} )}}{{dx}} \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} .\left( 1 \right) - 0 = f\left( x \right).\left( 1 \right) - 0 \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} = f\left( x \right) \\
1 - {\left( {f'\left( x \right)} \right)^2} = {(f\left( x \right))^2} \\
1 - {\left( {f\left( x \right)} \right)^2} = {\left( {f'\left( x \right)} \right)^2} \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = f'\left( x \right) \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = \dfrac{{d(f\left( x \right))}}{{dx}} \\
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
$
Consider f(x) as t and then integrate both sides-
$
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
dx = \pm \dfrac{{d(t)}}{{\sqrt {1 - {{\left( t \right)}^2}} }} \\
\int {dx} = \pm \int {\dfrac{{d(t)}}{{\sqrt {1 - {t^2}} }}} \\
x + C = \pm {\sin ^{ - 1}}\left( t \right) \\
\because t = f\left( x \right) \\
x + C = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
$
It is given that- f(0) = 0
Substituting x=0,
$
0 + C = \pm {\sin ^{ - 1}}\left( {f\left( 0 \right)} \right) \\
C = \pm {\sin ^{ - 1}}\left( 0 \right) \\
C = 0 \\
x = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
\pm \sin \left( x \right) = f\left( x \right) \\
$
As it has been given that f(x) is a non-negative function in [0, 1]
$\sin \left( x \right) = f\left( x \right)$
From standard equalities we know that,
$\sin x < x,x \in {R^ + }$
$
\sin \left( {\dfrac{1}{2}} \right) < \dfrac{1}{2} \\
\sin \left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{As both }}\dfrac{1}{2}{\text{ and }}\dfrac{1}{3}{\text{ are lying }}\left[ {0,1} \right] \\
$
The correct option is C.
Note: Whenever we get this type of question the key concept of solving is we have to understand According to the Leibnitz rule-$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$ . and we should have also remembered formulae of integration.
Complete step-by-step answer:
We are given with-
\[\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt = } \int\limits_0^x {f\left( t \right)dt} \]
According to the Leibnitz rule-
$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$
Accordingly,
$
\dfrac{{d(\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} dt)} }}{{dx}} = \dfrac{{d(\int\limits_0^x {f\left( t \right)dt} )}}{{dx}} \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} .\left( 1 \right) - 0 = f\left( x \right).\left( 1 \right) - 0 \\
\sqrt {1 - {{\left( {f'\left( x \right)} \right)}^2}} = f\left( x \right) \\
1 - {\left( {f'\left( x \right)} \right)^2} = {(f\left( x \right))^2} \\
1 - {\left( {f\left( x \right)} \right)^2} = {\left( {f'\left( x \right)} \right)^2} \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = f'\left( x \right) \\
\pm \sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} = \dfrac{{d(f\left( x \right))}}{{dx}} \\
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
$
Consider f(x) as t and then integrate both sides-
$
dx = \pm \dfrac{{d(f\left( x \right))}}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }} \\
dx = \pm \dfrac{{d(t)}}{{\sqrt {1 - {{\left( t \right)}^2}} }} \\
\int {dx} = \pm \int {\dfrac{{d(t)}}{{\sqrt {1 - {t^2}} }}} \\
x + C = \pm {\sin ^{ - 1}}\left( t \right) \\
\because t = f\left( x \right) \\
x + C = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
$
It is given that- f(0) = 0
Substituting x=0,
$
0 + C = \pm {\sin ^{ - 1}}\left( {f\left( 0 \right)} \right) \\
C = \pm {\sin ^{ - 1}}\left( 0 \right) \\
C = 0 \\
x = \pm {\sin ^{ - 1}}\left( {f\left( x \right)} \right) \\
\pm \sin \left( x \right) = f\left( x \right) \\
$
As it has been given that f(x) is a non-negative function in [0, 1]
$\sin \left( x \right) = f\left( x \right)$
From standard equalities we know that,
$\sin x < x,x \in {R^ + }$
$
\sin \left( {\dfrac{1}{2}} \right) < \dfrac{1}{2} \\
\sin \left( {\dfrac{1}{3}} \right) < \dfrac{1}{3} \\
{\text{As both }}\dfrac{1}{2}{\text{ and }}\dfrac{1}{3}{\text{ are lying }}\left[ {0,1} \right] \\
$
The correct option is C.
Note: Whenever we get this type of question the key concept of solving is we have to understand According to the Leibnitz rule-$\dfrac{{d(\int\limits_{a\left( x \right)}^{b\left( x \right)} {f(x)} )}}{{dx}} = f\left( b \right).b'\left( x \right) - f\left( a \right).a'\left( x \right)$ . and we should have also remembered formulae of integration.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
