
Let f be a function defined on R (the set of all real numbers) such that,\[f'\left( x \right) = 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}\], for all $x \in R$. If g is a function defined on R with values in the interval (0, $\infty $) such that f (x) = ln (g(x)), for all $x \in R$, then the number of points in R at which g has a local maximum is
$\left( a \right)$ 0
$\left( b \right)$ 1
$\left( c \right)$ 2
$\left( d \right)$ 3
Answer
591.3k+ views
Hint: In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to zero and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given data:
Let f be a function defined on R (the set of all real numbers) such that, \[f'\left( x \right) = 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}\]................... (1), for all $x \in R$.
Now the given function is
f (x) = ln (g(x)), for all $x \in R$.
Now take antilog on both sides we have,
$ \Rightarrow {e^{f\left( x \right)}} = g\left( x \right)$
Now differentiate the above equation w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{f\left( x \right)}} = \dfrac{d}{{dx}}g\left( x \right) = 0$
Now as we know that $\dfrac{d}{{dx}}{e^{f\left( x \right)}} = {e^{f\left( x \right)}}\dfrac{d}{{dx}}f\left( x \right)$ so we have,
$ \Rightarrow {e^{f\left( x \right)}}\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}g\left( x \right) = 0$
$ \Rightarrow {e^{f\left( x \right)}}f'\left( x \right) = g'\left( x \right) = 0$............... (2)
Now substitute the value of f’ (x) from equation (1) in the above equation we have,
$ \Rightarrow {e^{f\left( x \right)}}2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$
So from the above equation we can say that $2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$ and ${e^{f\left( x \right)}} \ne 0$.
$ \Rightarrow 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$
So from this the values of x are,
$ \Rightarrow x = 2009, 2010, 2011, 2012$
Now again differentiate the equation (2) we have
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{f\left( x \right)}}f'\left( x \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = g''\left( x \right) = \left[ {{e^{f\left( x \right)}}\dfrac{d}{{dx}}f'\left( x \right) + f'\left( x \right)\dfrac{d}{{dx}}{e^{f\left( x \right)}}} \right]$
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = g''\left( x \right) = \left[ {{e^{f\left( x \right)}}f''\left( x \right) + f'\left( x \right){e^{f\left( x \right)}}f'\left( x \right)} \right]$
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$............... (3)
Now differentiate equation (1) w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left[ {2010\left( {x-2009} \right){{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]\]
Now as we know that $\dfrac{d}{{dx}}abcd = a\dfrac{d}{{dx}}bcd + bcd\dfrac{d}{{dx}}a$, $\dfrac{d}{{dx}}bcd = b\dfrac{d}{{dx}}cd + cd\dfrac{d}{{dx}}b$, $\dfrac{d}{{dx}}cd = c\dfrac{d}{{dx}}d + d\dfrac{d}{{dx}}c$, $\dfrac{d}{{dx}}{\left( {f\left( x \right)} \right)^n} = n{\left( {f\left( x \right)} \right)^{n - 1}}\dfrac{d}{{dx}}f\left( x \right)$ so use this property in the above equation we have,
\[
\Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = 2010\left( {x-2009} \right)\dfrac{d}{{dx}}\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right] \\
+ 2010\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]\dfrac{d}{{dx}}\left( {x - 2009} \right) \\
\]
\[ \Rightarrow f''\left( x \right) = 2010\left\{ {\left( {x-2009} \right)\dfrac{d}{{dx}}\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right] + \left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]} \right\}\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} \\
+ 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}\dfrac{d}{{dx}}{\left( {x - 2010} \right)^2} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}\dfrac{d}{{dx}}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2012} \right)^4}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}4{\left( {x - 2012} \right)^3} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2012} \right)^4}3{\left( {x - 2011} \right)^2} \\
\]
Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$
Now when, x = 2009
\[ \Rightarrow f''\left( {2009} \right) = 2010{\left( {2009 - 2010} \right)^2}{\left( {2009 - 2011} \right)^3}{\left( {2009 - 2012} \right)^4} + 0 + 0 + 0\]
\[ \Rightarrow f''\left( {2009} \right) = 2010{\left( { - 1} \right)^2}{\left( { - 2} \right)^3}{\left( { - 3} \right)^4}\]
\[ \Rightarrow f''\left( {2009} \right) = 2010\left[ {\left( 1 \right)\left( { - 8} \right)\left( {81} \right)} \right]\]
\[ \Rightarrow f''\left( {2009} \right) = - 2010\left( 8 \right)\left( {81} \right)\]
Now when, x = 2010, 2011, 2012
$ \Rightarrow f''\left( {2010} \right) = f''\left( {2011} \right) = f''\left( {2012} \right) = 0$
And when, x = 2009, 2010, 2011, 2012 the value of f’ (x) is
\[f'\left( {2009} \right) = f'\left( {2010} \right) = f'\left( {2011} \right) = f'\left( {2012} \right) = 0\]
Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$
$ \Rightarrow g''\left( {2009} \right) = {e^{f\left( {2009} \right)}}f''\left( {2009} \right) + {\left[ {f'\left( {2009} \right)} \right]^2}{e^{f\left( {2009} \right)}} = {e^{f\left( {2009} \right)}}\left( { - 2010\left( {81} \right)\left( 8 \right)} \right)$ = negative so it is a local maxima.
$ \Rightarrow g''\left( {2009} \right) = g''\left( {2010} \right) = g''\left( {2011} \right) = g''\left( {2012} \right) = 0$, So at these values function is neither maximum nor minimum.
So there is only 1 point in R at which g has a local maximum which is 2009.
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as $\dfrac{d}{{dx}}abcd = a\dfrac{d}{{dx}}bcd + bcd\dfrac{d}{{dx}}a$, $\dfrac{d}{{dx}}bcd = b\dfrac{d}{{dx}}cd + cd\dfrac{d}{{dx}}b$, $\dfrac{d}{{dx}}cd = c\dfrac{d}{{dx}}d + d\dfrac{d}{{dx}}c$, $\dfrac{d}{{dx}}{\left( {f\left( x \right)} \right)^n} = n{\left( {f\left( x \right)} \right)^{n - 1}}\dfrac{d}{{dx}}f\left( x \right)$, $\dfrac{d}{{dx}}\left( {x - a} \right) = 1$.
Complete step-by-step answer:
Given data:
Let f be a function defined on R (the set of all real numbers) such that, \[f'\left( x \right) = 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}\]................... (1), for all $x \in R$.
Now the given function is
f (x) = ln (g(x)), for all $x \in R$.
Now take antilog on both sides we have,
$ \Rightarrow {e^{f\left( x \right)}} = g\left( x \right)$
Now differentiate the above equation w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}{e^{f\left( x \right)}} = \dfrac{d}{{dx}}g\left( x \right) = 0$
Now as we know that $\dfrac{d}{{dx}}{e^{f\left( x \right)}} = {e^{f\left( x \right)}}\dfrac{d}{{dx}}f\left( x \right)$ so we have,
$ \Rightarrow {e^{f\left( x \right)}}\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}g\left( x \right) = 0$
$ \Rightarrow {e^{f\left( x \right)}}f'\left( x \right) = g'\left( x \right) = 0$............... (2)
Now substitute the value of f’ (x) from equation (1) in the above equation we have,
$ \Rightarrow {e^{f\left( x \right)}}2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$
So from the above equation we can say that $2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$ and ${e^{f\left( x \right)}} \ne 0$.
$ \Rightarrow 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} = 0$
So from this the values of x are,
$ \Rightarrow x = 2009, 2010, 2011, 2012$
Now again differentiate the equation (2) we have
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{f\left( x \right)}}f'\left( x \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = g''\left( x \right) = \left[ {{e^{f\left( x \right)}}\dfrac{d}{{dx}}f'\left( x \right) + f'\left( x \right)\dfrac{d}{{dx}}{e^{f\left( x \right)}}} \right]$
$ \Rightarrow \dfrac{d}{{dx}}g'\left( x \right) = g''\left( x \right) = \left[ {{e^{f\left( x \right)}}f''\left( x \right) + f'\left( x \right){e^{f\left( x \right)}}f'\left( x \right)} \right]$
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$............... (3)
Now differentiate equation (1) w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left[ {2010\left( {x-2009} \right){{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]\]
Now as we know that $\dfrac{d}{{dx}}abcd = a\dfrac{d}{{dx}}bcd + bcd\dfrac{d}{{dx}}a$, $\dfrac{d}{{dx}}bcd = b\dfrac{d}{{dx}}cd + cd\dfrac{d}{{dx}}b$, $\dfrac{d}{{dx}}cd = c\dfrac{d}{{dx}}d + d\dfrac{d}{{dx}}c$, $\dfrac{d}{{dx}}{\left( {f\left( x \right)} \right)^n} = n{\left( {f\left( x \right)} \right)^{n - 1}}\dfrac{d}{{dx}}f\left( x \right)$ so use this property in the above equation we have,
\[
\Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = 2010\left( {x-2009} \right)\dfrac{d}{{dx}}\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right] \\
+ 2010\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]\dfrac{d}{{dx}}\left( {x - 2009} \right) \\
\]
\[ \Rightarrow f''\left( x \right) = 2010\left\{ {\left( {x-2009} \right)\dfrac{d}{{dx}}\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right] + \left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]} \right\}\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} \\
+ 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}\dfrac{d}{{dx}}{\left( {x - 2010} \right)^2} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}\dfrac{d}{{dx}}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2012} \right)^4}\dfrac{d}{{dx}}{\left( {x - 2011} \right)^3} \\
\]
\[
\Rightarrow f''\left( x \right) = 2010{\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4} + 2010\left( {x-2009} \right){\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}2\left( {x - 2010} \right) \\
+ 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}4{\left( {x - 2012} \right)^3} + 2010\left( {x-2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2012} \right)^4}3{\left( {x - 2011} \right)^2} \\
\]
Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$
Now when, x = 2009
\[ \Rightarrow f''\left( {2009} \right) = 2010{\left( {2009 - 2010} \right)^2}{\left( {2009 - 2011} \right)^3}{\left( {2009 - 2012} \right)^4} + 0 + 0 + 0\]
\[ \Rightarrow f''\left( {2009} \right) = 2010{\left( { - 1} \right)^2}{\left( { - 2} \right)^3}{\left( { - 3} \right)^4}\]
\[ \Rightarrow f''\left( {2009} \right) = 2010\left[ {\left( 1 \right)\left( { - 8} \right)\left( {81} \right)} \right]\]
\[ \Rightarrow f''\left( {2009} \right) = - 2010\left( 8 \right)\left( {81} \right)\]
Now when, x = 2010, 2011, 2012
$ \Rightarrow f''\left( {2010} \right) = f''\left( {2011} \right) = f''\left( {2012} \right) = 0$
And when, x = 2009, 2010, 2011, 2012 the value of f’ (x) is
\[f'\left( {2009} \right) = f'\left( {2010} \right) = f'\left( {2011} \right) = f'\left( {2012} \right) = 0\]
Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
$ \Rightarrow g''\left( x \right) = {e^{f\left( x \right)}}f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2}{e^{f\left( x \right)}}$
$ \Rightarrow g''\left( {2009} \right) = {e^{f\left( {2009} \right)}}f''\left( {2009} \right) + {\left[ {f'\left( {2009} \right)} \right]^2}{e^{f\left( {2009} \right)}} = {e^{f\left( {2009} \right)}}\left( { - 2010\left( {81} \right)\left( 8 \right)} \right)$ = negative so it is a local maxima.
$ \Rightarrow g''\left( {2009} \right) = g''\left( {2010} \right) = g''\left( {2011} \right) = g''\left( {2012} \right) = 0$, So at these values function is neither maximum nor minimum.
So there is only 1 point in R at which g has a local maximum which is 2009.
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as $\dfrac{d}{{dx}}abcd = a\dfrac{d}{{dx}}bcd + bcd\dfrac{d}{{dx}}a$, $\dfrac{d}{{dx}}bcd = b\dfrac{d}{{dx}}cd + cd\dfrac{d}{{dx}}b$, $\dfrac{d}{{dx}}cd = c\dfrac{d}{{dx}}d + d\dfrac{d}{{dx}}c$, $\dfrac{d}{{dx}}{\left( {f\left( x \right)} \right)^n} = n{\left( {f\left( x \right)} \right)^{n - 1}}\dfrac{d}{{dx}}f\left( x \right)$, $\dfrac{d}{{dx}}\left( {x - a} \right) = 1$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

