Answer
Verified
464.1k+ views
Hint: Use the fact that if f(x) is an increasing function then for all ${{x}_{1}}>{{x}_{2}}$, we have $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$. Similarly, if $f\left( x \right)$ is a decreasing function, then for all ${{x}_{1}}>{{x}_{2}}$, we have $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$. Hence choose ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$ and check whether $h\left( {{x}_{1}} \right)-1-\left( h\left( {{x}_{2}} \right)-1 \right)\ge 0$ or $\le 0$ and hence determine the nature of $h\left( x \right)-h\left( 1 \right)$.
Complete step-by-step answer:
We know that if $f\left( x \right)$ is increasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$ and if f(x) is decreasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$
Now consider ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$, we have since g(x) is a decreasing function
$g\left( {{x}_{1}} \right)\le g\left( {{x}_{2}} \right)$
Now since $g\left( {{x}_{1}} \right),g\left( {{x}_{2}} \right)\in \left( 0,\infty \right)$ because codomain of g(x) is $\left( 0,\infty \right)$ and since f(x) is increasing in $\left( 0,\infty \right)$, we have
$f\left( g\left( {{x}_{1}} \right) \right)\le f\left( g\left( {{x}_{2}} \right) \right)$
Hence we have $h\left( {{x}_{1}} \right)\le h\left( {{x}_{2}} \right)$
Hence h(x) is a decreasing function.
Since in the interval $\left( 0,\infty \right)$, there exist ${{x}_{1}}<1$ and ${{x}_{2}}>1$, we have $h\left( {{x}_{1}} \right)-h\left( 1 \right)\ge 0$ and $h\left( {{x}_{2}} \right)-1\le 0$
Hence h(x) – h(1) is both positive as well as negative in the interval $\left( 0,\infty \right)$
Hence none of the options is correct.
Note: Do not try proving that h(x) is a decreasing function by differentiating both sides and showing h’(x) is non-positive. This method is incorrect as it justifies h(x) being decreasing only if f(x) and g(x) are differentiable and not in general.
Complete step-by-step answer:
We know that if $f\left( x \right)$ is increasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$ and if f(x) is decreasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$
Now consider ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$, we have since g(x) is a decreasing function
$g\left( {{x}_{1}} \right)\le g\left( {{x}_{2}} \right)$
Now since $g\left( {{x}_{1}} \right),g\left( {{x}_{2}} \right)\in \left( 0,\infty \right)$ because codomain of g(x) is $\left( 0,\infty \right)$ and since f(x) is increasing in $\left( 0,\infty \right)$, we have
$f\left( g\left( {{x}_{1}} \right) \right)\le f\left( g\left( {{x}_{2}} \right) \right)$
Hence we have $h\left( {{x}_{1}} \right)\le h\left( {{x}_{2}} \right)$
Hence h(x) is a decreasing function.
Since in the interval $\left( 0,\infty \right)$, there exist ${{x}_{1}}<1$ and ${{x}_{2}}>1$, we have $h\left( {{x}_{1}} \right)-h\left( 1 \right)\ge 0$ and $h\left( {{x}_{2}} \right)-1\le 0$
Hence h(x) – h(1) is both positive as well as negative in the interval $\left( 0,\infty \right)$
Hence none of the options is correct.
Note: Do not try proving that h(x) is a decreasing function by differentiating both sides and showing h’(x) is non-positive. This method is incorrect as it justifies h(x) being decreasing only if f(x) and g(x) are differentiable and not in general.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Give a reason for the establishment of the Mohammedan class 10 social science CBSE
What are the two main features of Himadri class 11 social science CBSE
The continent which does not touch the Mediterranean class 7 social science CBSE
India has form of democracy a Direct b Indirect c Presidential class 12 sst CBSE
which foreign country is closest to andaman islands class 10 social science CBSE
One cusec is equal to how many liters class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which foreign country is closest to Andaman Islands class 11 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE