
Let f and g be increasing and decreasing functions respectively from $\left( 0,\infty \right)$ to $\left( 0,\infty \right)$ and let h(x) = f[g(x)]. If h(0)= 0, then h(x) – h(1) is
[a] always zero
[b] always negative
[c] always positive
[d] strictly increasing
[e] None of these.
Answer
597.9k+ views
Hint: Use the fact that if f(x) is an increasing function then for all ${{x}_{1}}>{{x}_{2}}$, we have $f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$. Similarly, if $f\left( x \right)$ is a decreasing function, then for all ${{x}_{1}}>{{x}_{2}}$, we have $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$. Hence choose ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$ and check whether $h\left( {{x}_{1}} \right)-1-\left( h\left( {{x}_{2}} \right)-1 \right)\ge 0$ or $\le 0$ and hence determine the nature of $h\left( x \right)-h\left( 1 \right)$.
Complete step-by-step answer:
We know that if $f\left( x \right)$ is increasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$ and if f(x) is decreasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$
Now consider ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$, we have since g(x) is a decreasing function
$g\left( {{x}_{1}} \right)\le g\left( {{x}_{2}} \right)$
Now since $g\left( {{x}_{1}} \right),g\left( {{x}_{2}} \right)\in \left( 0,\infty \right)$ because codomain of g(x) is $\left( 0,\infty \right)$ and since f(x) is increasing in $\left( 0,\infty \right)$, we have
$f\left( g\left( {{x}_{1}} \right) \right)\le f\left( g\left( {{x}_{2}} \right) \right)$
Hence we have $h\left( {{x}_{1}} \right)\le h\left( {{x}_{2}} \right)$
Hence h(x) is a decreasing function.
Since in the interval $\left( 0,\infty \right)$, there exist ${{x}_{1}}<1$ and ${{x}_{2}}>1$, we have $h\left( {{x}_{1}} \right)-h\left( 1 \right)\ge 0$ and $h\left( {{x}_{2}} \right)-1\le 0$
Hence h(x) – h(1) is both positive as well as negative in the interval $\left( 0,\infty \right)$
Hence none of the options is correct.
Note: Do not try proving that h(x) is a decreasing function by differentiating both sides and showing h’(x) is non-positive. This method is incorrect as it justifies h(x) being decreasing only if f(x) and g(x) are differentiable and not in general.
Complete step-by-step answer:
We know that if $f\left( x \right)$ is increasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\ge f\left( {{x}_{2}} \right)$ and if f(x) is decreasing in the interval $I$, then for all ${{x}_{1}},{{x}_{2}}\in I$, we have ${{x}_{1}}>{{x}_{2}}\Rightarrow f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$
Now consider ${{x}_{1}},{{x}_{2}}\in \left( 0,\infty \right)$, we have since g(x) is a decreasing function
$g\left( {{x}_{1}} \right)\le g\left( {{x}_{2}} \right)$
Now since $g\left( {{x}_{1}} \right),g\left( {{x}_{2}} \right)\in \left( 0,\infty \right)$ because codomain of g(x) is $\left( 0,\infty \right)$ and since f(x) is increasing in $\left( 0,\infty \right)$, we have
$f\left( g\left( {{x}_{1}} \right) \right)\le f\left( g\left( {{x}_{2}} \right) \right)$
Hence we have $h\left( {{x}_{1}} \right)\le h\left( {{x}_{2}} \right)$
Hence h(x) is a decreasing function.
Since in the interval $\left( 0,\infty \right)$, there exist ${{x}_{1}}<1$ and ${{x}_{2}}>1$, we have $h\left( {{x}_{1}} \right)-h\left( 1 \right)\ge 0$ and $h\left( {{x}_{2}} \right)-1\le 0$
Hence h(x) – h(1) is both positive as well as negative in the interval $\left( 0,\infty \right)$
Hence none of the options is correct.
Note: Do not try proving that h(x) is a decreasing function by differentiating both sides and showing h’(x) is non-positive. This method is incorrect as it justifies h(x) being decreasing only if f(x) and g(x) are differentiable and not in general.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

