
Let $\dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$ and ${{a}^{2}}+{{b}^{2}}=1$ where $a$ and $b$ are real, then $x$ equal to.
Answer
415.8k+ views
Hint: In this question we have been given with the expression for which we have to find the value of $x$ given that ${{a}^{2}}+{{b}^{2}}=1$. We will solve this question by first rationalizing the denominator by multiplying both the numerator and denominator by $\left( 1-ix \right)$ and get the term in the form of $a-ib$. We will then find ${{\left( 1+a \right)}^{2}}+{{b}^{2}}$ and then rearrange the expression to get the value of $x$ to get the required solution.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$
On rationalizing the denominator by multiplying by $\left( 1-ix \right)$, we get:
$\Rightarrow \dfrac{\left( 1-ix \right)\left( 1-ix \right)}{\left( 1+ix \right)\left( 1-ix \right)}=\left( a-ib \right)$
On multiplying the terms, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{{{1}^{2}}-{{\left( ix \right)}^{2}}}=\left( a-ib \right)$
On simplifying, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1-{{i}^{2}}{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On using the expansion formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
$\Rightarrow \dfrac{1-2ix+{{i}^{2}}{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{1-2ix-{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On splitting the terms with the real part on one side and the complex part on another side, we get:
$\Rightarrow \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}-i\dfrac{2x}{1+{{x}^{2}}}=\left( a-ib \right)$
On comparing, we get $a=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$ and $b=\dfrac{2x}{1+{{x}^{2}}}$
Now on doing $1+a$, we get:
$\Rightarrow 1+a=1+\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$
On taking the lowest common multiple, we get:
$\Rightarrow 1+a=\dfrac{1+{{x}^{2}}+1-{{x}^{2}}}{1+{{x}^{2}}}$
On simplifying, we get:
$\Rightarrow 1+a=\dfrac{2}{1+{{x}^{2}}}$
On squaring both the sides, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}={{\left( \dfrac{2}{1+{{x}^{2}}} \right)}^{2}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 1 \right)$
Now we have $b=\dfrac{2x}{1+{{x}^{2}}}$ and ${{b}^{2}}=\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 2 \right)$
Now on adding equation $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
Since the denominator is same, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4+4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On taking $4$ common, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{1+{{x}^{2}}}$
Now we have $2b=\dfrac{4x}{1+{{x}^{2}}}$
Therefore, we can write it as:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{2b}{x}$
On rearranging, we get:
$\Rightarrow x=\dfrac{2b}{{{\left( 1+a \right)}^{2}}+{{b}^{2}}}$, which is the required solution.
Note: In these types of questions, it is to be remembered that complex numbers should be represented in the form of $a-ib$ and the real part and the imaginary part should be split. The value of $i$ should be remembered which is that $i$ is the square root of negative $1$ therefore, it can be written as $i=\sqrt{-1}$, therefore we can use the property ${{i}^{2}}=-1$.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$
On rationalizing the denominator by multiplying by $\left( 1-ix \right)$, we get:
$\Rightarrow \dfrac{\left( 1-ix \right)\left( 1-ix \right)}{\left( 1+ix \right)\left( 1-ix \right)}=\left( a-ib \right)$
On multiplying the terms, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{{{1}^{2}}-{{\left( ix \right)}^{2}}}=\left( a-ib \right)$
On simplifying, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1-{{i}^{2}}{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On using the expansion formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
$\Rightarrow \dfrac{1-2ix+{{i}^{2}}{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{1-2ix-{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On splitting the terms with the real part on one side and the complex part on another side, we get:
$\Rightarrow \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}-i\dfrac{2x}{1+{{x}^{2}}}=\left( a-ib \right)$
On comparing, we get $a=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$ and $b=\dfrac{2x}{1+{{x}^{2}}}$
Now on doing $1+a$, we get:
$\Rightarrow 1+a=1+\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$
On taking the lowest common multiple, we get:
$\Rightarrow 1+a=\dfrac{1+{{x}^{2}}+1-{{x}^{2}}}{1+{{x}^{2}}}$
On simplifying, we get:
$\Rightarrow 1+a=\dfrac{2}{1+{{x}^{2}}}$
On squaring both the sides, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}={{\left( \dfrac{2}{1+{{x}^{2}}} \right)}^{2}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 1 \right)$
Now we have $b=\dfrac{2x}{1+{{x}^{2}}}$ and ${{b}^{2}}=\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 2 \right)$
Now on adding equation $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
Since the denominator is same, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4+4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On taking $4$ common, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{1+{{x}^{2}}}$
Now we have $2b=\dfrac{4x}{1+{{x}^{2}}}$
Therefore, we can write it as:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{2b}{x}$
On rearranging, we get:
$\Rightarrow x=\dfrac{2b}{{{\left( 1+a \right)}^{2}}+{{b}^{2}}}$, which is the required solution.
Note: In these types of questions, it is to be remembered that complex numbers should be represented in the form of $a-ib$ and the real part and the imaginary part should be split. The value of $i$ should be remembered which is that $i$ is the square root of negative $1$ therefore, it can be written as $i=\sqrt{-1}$, therefore we can use the property ${{i}^{2}}=-1$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
