
Let $\dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$ and ${{a}^{2}}+{{b}^{2}}=1$ where $a$ and $b$ are real, then $x$ equal to.
Answer
498.6k+ views
Hint: In this question we have been given with the expression for which we have to find the value of $x$ given that ${{a}^{2}}+{{b}^{2}}=1$. We will solve this question by first rationalizing the denominator by multiplying both the numerator and denominator by $\left( 1-ix \right)$ and get the term in the form of $a-ib$. We will then find ${{\left( 1+a \right)}^{2}}+{{b}^{2}}$ and then rearrange the expression to get the value of $x$ to get the required solution.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$
On rationalizing the denominator by multiplying by $\left( 1-ix \right)$, we get:
$\Rightarrow \dfrac{\left( 1-ix \right)\left( 1-ix \right)}{\left( 1+ix \right)\left( 1-ix \right)}=\left( a-ib \right)$
On multiplying the terms, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{{{1}^{2}}-{{\left( ix \right)}^{2}}}=\left( a-ib \right)$
On simplifying, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1-{{i}^{2}}{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On using the expansion formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
$\Rightarrow \dfrac{1-2ix+{{i}^{2}}{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{1-2ix-{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On splitting the terms with the real part on one side and the complex part on another side, we get:
$\Rightarrow \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}-i\dfrac{2x}{1+{{x}^{2}}}=\left( a-ib \right)$
On comparing, we get $a=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$ and $b=\dfrac{2x}{1+{{x}^{2}}}$
Now on doing $1+a$, we get:
$\Rightarrow 1+a=1+\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$
On taking the lowest common multiple, we get:
$\Rightarrow 1+a=\dfrac{1+{{x}^{2}}+1-{{x}^{2}}}{1+{{x}^{2}}}$
On simplifying, we get:
$\Rightarrow 1+a=\dfrac{2}{1+{{x}^{2}}}$
On squaring both the sides, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}={{\left( \dfrac{2}{1+{{x}^{2}}} \right)}^{2}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 1 \right)$
Now we have $b=\dfrac{2x}{1+{{x}^{2}}}$ and ${{b}^{2}}=\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 2 \right)$
Now on adding equation $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
Since the denominator is same, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4+4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On taking $4$ common, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{1+{{x}^{2}}}$
Now we have $2b=\dfrac{4x}{1+{{x}^{2}}}$
Therefore, we can write it as:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{2b}{x}$
On rearranging, we get:
$\Rightarrow x=\dfrac{2b}{{{\left( 1+a \right)}^{2}}+{{b}^{2}}}$, which is the required solution.
Note: In these types of questions, it is to be remembered that complex numbers should be represented in the form of $a-ib$ and the real part and the imaginary part should be split. The value of $i$ should be remembered which is that $i$ is the square root of negative $1$ therefore, it can be written as $i=\sqrt{-1}$, therefore we can use the property ${{i}^{2}}=-1$.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \dfrac{\left( 1-ix \right)}{\left( 1+ix \right)}=\left( a-ib \right)$
On rationalizing the denominator by multiplying by $\left( 1-ix \right)$, we get:
$\Rightarrow \dfrac{\left( 1-ix \right)\left( 1-ix \right)}{\left( 1+ix \right)\left( 1-ix \right)}=\left( a-ib \right)$
On multiplying the terms, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{{{1}^{2}}-{{\left( ix \right)}^{2}}}=\left( a-ib \right)$
On simplifying, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1-{{i}^{2}}{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{{{\left( 1-ix \right)}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On using the expansion formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
$\Rightarrow \dfrac{1-2ix+{{i}^{2}}{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
Now we know that ${{i}^{2}}=-1$, we get:
$\Rightarrow \dfrac{1-2ix-{{x}^{2}}}{1+{{x}^{2}}}=\left( a-ib \right)$
On splitting the terms with the real part on one side and the complex part on another side, we get:
$\Rightarrow \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}-i\dfrac{2x}{1+{{x}^{2}}}=\left( a-ib \right)$
On comparing, we get $a=\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$ and $b=\dfrac{2x}{1+{{x}^{2}}}$
Now on doing $1+a$, we get:
$\Rightarrow 1+a=1+\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}}$
On taking the lowest common multiple, we get:
$\Rightarrow 1+a=\dfrac{1+{{x}^{2}}+1-{{x}^{2}}}{1+{{x}^{2}}}$
On simplifying, we get:
$\Rightarrow 1+a=\dfrac{2}{1+{{x}^{2}}}$
On squaring both the sides, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}={{\left( \dfrac{2}{1+{{x}^{2}}} \right)}^{2}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 1 \right)$
Now we have $b=\dfrac{2x}{1+{{x}^{2}}}$ and ${{b}^{2}}=\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}\to \left( 2 \right)$
Now on adding equation $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{{{\left( 1+{{x}^{2}} \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
Since the denominator is same, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4+4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On taking $4$ common, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$
On simplifying, we get:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{4}{1+{{x}^{2}}}$
Now we have $2b=\dfrac{4x}{1+{{x}^{2}}}$
Therefore, we can write it as:
$\Rightarrow {{\left( 1+a \right)}^{2}}+{{b}^{2}}=\dfrac{2b}{x}$
On rearranging, we get:
$\Rightarrow x=\dfrac{2b}{{{\left( 1+a \right)}^{2}}+{{b}^{2}}}$, which is the required solution.
Note: In these types of questions, it is to be remembered that complex numbers should be represented in the form of $a-ib$ and the real part and the imaginary part should be split. The value of $i$ should be remembered which is that $i$ is the square root of negative $1$ therefore, it can be written as $i=\sqrt{-1}$, therefore we can use the property ${{i}^{2}}=-1$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

