
Let $\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}$, suppose ${\alpha _1}$ and ${\beta _1}$ are the equation ${x^2} - 2x\sec \theta + 1 = 0$ and ${\alpha _2}$ and ${\beta _2}$ are the roots of the equation ${x^2} + 2x\tan \theta - 1 = 0$. If ${\alpha _1} > {\beta _1}$ and ${\alpha _2} > {\beta _2}$, then find the value of ${\alpha _1} + {\beta _2}$.
(A) $2\left( {\sec \theta - \tan \theta } \right)$
(B) $2\sec \theta $
(C) $ - 2\tan \theta $
(D) $0$
Answer
591.3k+ views
Hint: Analyse the problem properly before starting a solution. Start with finding the roots of quadratic equations using the Quadratic formula. Now use the interval of angle $\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}$ to find the value of $\alpha ,\beta $ according to the relation ${\alpha _1} > {\beta _1}$ and ${\alpha _2} > {\beta _2}$. After finding roots separately, just evaluate ${\alpha _1} + {\beta _2}$.
Complete step-by-step answer:
Firstly, we should analyse the given information in the question. It is given that angle $\theta $ lies in an interval $\left( { - 30^\circ , - 15^\circ } \right)$. And we are given with two quadratic equations ${x^2} - 2x\sec \theta + 1 = 0$ and ${x^2} + 2x\tan \theta - 1 = 0$ with the respective roots as ${\alpha _1}$, ${\beta _1}$ and ${\alpha _2}$, ${\beta _2}$. Also, we know that $\alpha > \beta $ for both the pairs.
We can start by finding the roots of the equation ${x^2} - 2x\sec \theta + 1 = 0$ first. This can be done by using Quadratic formula, that can define for an equation of the form $a{x^2} + bx + c = 0$ as:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Using the Quadratic formula, we can write the roots of the equation ${x^2} - 2x\sec \theta + 1 = 0$ as:
$ \Rightarrow x = \dfrac{{ - \left( { - 2\sec \theta } \right) \pm \sqrt {{{\left( { - 2\sec \theta } \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
This can be further simplified as:
$ \Rightarrow x = \dfrac{{2\sec \theta \pm \sqrt {4{{\sec }^2}\theta - 4} }}{2} = \dfrac{{2\sec \theta \pm 2\sqrt {{{\sec }^2}\theta - 1} }}{2}$
We can now divide the numerator by $2$, so we get:
$ \Rightarrow x = \sec \theta \pm \sqrt {{{\sec }^2}\theta - 1} $
Also, we know that: $1 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1$ . Substituting that:
$ \Rightarrow x = \sec \theta \pm \sqrt {{{\tan }^2}\theta } = \sec \theta \pm \tan \theta $ (1)
Now, let’s consider the equation ${x^2} + 2x\tan \theta - 1 = 0$ and apply the Quadratic equation in this:
$ \Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {{{\left( {2\tan \theta } \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{{2 \times 1}}$
Now, let’s take $4$ out of the radical sign and rewrite it as:
$ \Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {4{{\tan }^2}\theta + 4} }}{2} = \dfrac{{ - 2\tan \theta \pm 2\sqrt {{{\tan }^2}\theta + 1} }}{2} = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1} $
Again by using: $1 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1$, we get:
$ \Rightarrow x = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1} = - \tan \theta \pm \sec \theta $ (2)
Now, we already know that angle $\theta $ lies in $\left( { - 30^\circ , - 15^\circ } \right)$, therefore both $\sec \theta $ and $\tan \theta $ are negative in this interval. Since $\theta $ lies in fourth quadrant and Secant and tangent functions have negative values for fourth quadrant angles.
$ \Rightarrow \sec \theta < 0,\tan \theta < 0$ for all $\theta $in the interval $\left( { - 30^\circ , - 15^\circ } \right)$
So, from relation (1) and (2), we can conclude from ${\alpha _1} > {\beta _1}$ and ${\alpha _2} > {\beta _2}$ that:
${\alpha _1} = \sec \theta - \tan \theta $
${\beta _1} = \sec \theta + \tan \theta $
${\alpha _2} = \sec \theta - \tan \theta $
${\beta _2} = - \sec \theta - \tan \theta $
Therefore, the required value: ${\alpha _1} + {\beta _2} = \sec \theta - \tan \theta - sec\theta - \tan \theta = - 2\tan \theta $
Hence, the option (C) is the correct option.
Note: Solve the quadratic formula carefully. The given angle interval $\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}$ can be written as $\left( { - 30^\circ , - 15^\circ } \right)$ because $\pi $ radians of angle is equal to $180^\circ $ angle. So $\dfrac{{ - \pi }}{6} = 30^\circ $ can be a different way of writing the angles. While figuring out the value of ${\alpha _1},{\beta _1}$ using the solution of the respective equation carefully. The sign of secant and tangent function will determine the larger root.
Complete step-by-step answer:
Firstly, we should analyse the given information in the question. It is given that angle $\theta $ lies in an interval $\left( { - 30^\circ , - 15^\circ } \right)$. And we are given with two quadratic equations ${x^2} - 2x\sec \theta + 1 = 0$ and ${x^2} + 2x\tan \theta - 1 = 0$ with the respective roots as ${\alpha _1}$, ${\beta _1}$ and ${\alpha _2}$, ${\beta _2}$. Also, we know that $\alpha > \beta $ for both the pairs.
We can start by finding the roots of the equation ${x^2} - 2x\sec \theta + 1 = 0$ first. This can be done by using Quadratic formula, that can define for an equation of the form $a{x^2} + bx + c = 0$ as:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Using the Quadratic formula, we can write the roots of the equation ${x^2} - 2x\sec \theta + 1 = 0$ as:
$ \Rightarrow x = \dfrac{{ - \left( { - 2\sec \theta } \right) \pm \sqrt {{{\left( { - 2\sec \theta } \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}}$
This can be further simplified as:
$ \Rightarrow x = \dfrac{{2\sec \theta \pm \sqrt {4{{\sec }^2}\theta - 4} }}{2} = \dfrac{{2\sec \theta \pm 2\sqrt {{{\sec }^2}\theta - 1} }}{2}$
We can now divide the numerator by $2$, so we get:
$ \Rightarrow x = \sec \theta \pm \sqrt {{{\sec }^2}\theta - 1} $
Also, we know that: $1 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1$ . Substituting that:
$ \Rightarrow x = \sec \theta \pm \sqrt {{{\tan }^2}\theta } = \sec \theta \pm \tan \theta $ (1)
Now, let’s consider the equation ${x^2} + 2x\tan \theta - 1 = 0$ and apply the Quadratic equation in this:
$ \Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {{{\left( {2\tan \theta } \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{{2 \times 1}}$
Now, let’s take $4$ out of the radical sign and rewrite it as:
$ \Rightarrow x = \dfrac{{ - 2\tan \theta \pm \sqrt {4{{\tan }^2}\theta + 4} }}{2} = \dfrac{{ - 2\tan \theta \pm 2\sqrt {{{\tan }^2}\theta + 1} }}{2} = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1} $
Again by using: $1 + {\tan ^2}\theta = {\sec ^2}\theta \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta + 1$, we get:
$ \Rightarrow x = - \tan \theta \pm \sqrt {{{\tan }^2}\theta + 1} = - \tan \theta \pm \sec \theta $ (2)
Now, we already know that angle $\theta $ lies in $\left( { - 30^\circ , - 15^\circ } \right)$, therefore both $\sec \theta $ and $\tan \theta $ are negative in this interval. Since $\theta $ lies in fourth quadrant and Secant and tangent functions have negative values for fourth quadrant angles.
$ \Rightarrow \sec \theta < 0,\tan \theta < 0$ for all $\theta $in the interval $\left( { - 30^\circ , - 15^\circ } \right)$
So, from relation (1) and (2), we can conclude from ${\alpha _1} > {\beta _1}$ and ${\alpha _2} > {\beta _2}$ that:
${\alpha _1} = \sec \theta - \tan \theta $
${\beta _1} = \sec \theta + \tan \theta $
${\alpha _2} = \sec \theta - \tan \theta $
${\beta _2} = - \sec \theta - \tan \theta $
Therefore, the required value: ${\alpha _1} + {\beta _2} = \sec \theta - \tan \theta - sec\theta - \tan \theta = - 2\tan \theta $
Hence, the option (C) is the correct option.
Note: Solve the quadratic formula carefully. The given angle interval $\dfrac{{ - \pi }}{6} < \theta < \dfrac{{ - \pi }}{{12}}$ can be written as $\left( { - 30^\circ , - 15^\circ } \right)$ because $\pi $ radians of angle is equal to $180^\circ $ angle. So $\dfrac{{ - \pi }}{6} = 30^\circ $ can be a different way of writing the angles. While figuring out the value of ${\alpha _1},{\beta _1}$ using the solution of the respective equation carefully. The sign of secant and tangent function will determine the larger root.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

