
Let $\cos \left( \alpha +\beta \right)=\dfrac{4}{5}$ and let $\sin \left( \alpha -\beta \right)=\dfrac{5}{13}$ , where $0\le \alpha ,\beta \le \dfrac{\pi }{4}$ then $\tan \left( 2\alpha \right)=$
$\begin{align}
& a)\dfrac{56}{33} \\
& b)\dfrac{19}{12} \\
& c)\dfrac{20}{7} \\
& d)\dfrac{25}{16} \\
\end{align}$
Answer
586.2k+ views
Hint: Now we are given with $\cos \left( \alpha +\beta \right)$ and $\sin \left( \alpha -\beta \right)$.
Now we know that ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$ , ${{\tan }^{2}}x+1={{\sec }^{2}}x$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Using these identities we can find the value of $\tan \left( \alpha +\beta \right)$ and $\tan \left( \alpha -\beta \right)$ . Now we have $\tan \left( 2\alpha \right)=\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)$ and $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ . hence we can get the value of $\tan 2\alpha $
Complete step by step answer:
Now first consider $\cos \left( \alpha +\beta \right)=\dfrac{4}{5}$
Squaring the equation on both sides we get
${{\cos }^{2}}\left( \alpha +\beta \right)=\dfrac{16}{25}$
Taking inverse on both sides we get
$\dfrac{1}{{{\cos }^{2}}\left( \alpha +\beta \right)}=\dfrac{25}{16}$
Now we know that ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$
Hence we get
${{\sec }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}$
Now we have identity ${{\tan }^{2}}x+1={{\sec }^{2}}x$ using this we get.
$\begin{align}
& 1+{{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16} \\
& \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}-1 \\
& \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25-16}{16}=\dfrac{9}{16} \\
& \Rightarrow \tan \left( \alpha +\beta \right)=\pm \dfrac{3}{4} \\
\end{align}$
Now since we have $0\le \alpha ,\beta \le \dfrac{\pi }{4}$ we can say $0\le \alpha +\beta \le \dfrac{\pi }{2}$ and tan is positive in first quadrant.
Hence we get $\tan \left( \alpha +\beta \right)=\dfrac{3}{4}...............(1)$
Now consider $\sin \left( \alpha -\beta \right)=\dfrac{5}{13}$
Now squaring on both sides we get ${{\sin }^{2}}\left( \alpha -\beta \right)=\dfrac{25}{169}$
Now we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Hence we get \[{{\cos }^{2}}\left( \alpha -\beta \right)+\dfrac{25}{69}=1\]
Hence we get
\[\begin{align}
& {{\cos }^{2}}\left( \alpha -\beta \right)=1-\dfrac{25}{169} \\
& \Rightarrow {{\cos }^{2}}\left( \alpha -\beta \right)=\dfrac{169-25}{169}=\dfrac{144}{169} \\
\end{align}\]
Now if we take inverse on both sides we get.
$\dfrac{1}{{{\cos }^{2}}\left( \alpha -\beta \right)}=\dfrac{169}{144}$
Now we have ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$ using this identity we get
${{\sec }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}$
Now we have the identity we get ${{\tan }^{2}}x+1={{\sec }^{2}}x$ . hence we get
$\begin{align}
& 1+{{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144} \\
& \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}-1 \\
& \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169-144}{144}=\dfrac{25}{144} \\
& \Rightarrow \tan \left( \alpha -\beta \right)=\pm \dfrac{5}{12} \\
\end{align}$
Now we have $0\le \alpha ,\beta \le \dfrac{\pi }{4}$
Hence $\dfrac{-\pi }{4}\le \alpha -\beta \le \dfrac{\pi }{4}$
Now the angle $\alpha -\beta $ lies in the fourth of the first quadrant.
Now since $\sin \left( \alpha -\beta \right)$ is positive we have $\alpha -\beta $ is in first quadrant
And we know that the first quadrant tan is positive.
Hence we have
$\tan \left( \alpha -\beta \right)=\dfrac{5}{12}.......................\left( 2 \right)$
Now consider $\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)$
Now we know that $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$
Hence we get
\[\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\tan \left( \alpha +\beta \right)+\tan \left( \alpha -\beta \right)}{1-\tan \left( \alpha +\beta \right)\tan \left( \alpha -\beta \right)}\]
Now from equation (1) and equation (2) we get
\[\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\dfrac{3}{4}+\dfrac{5}{12}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{5}{12} \right)}\]
Now taking LCM we get
\[\begin{align}
& \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{3\times 3}{4\times 3}+\dfrac{5}{12}}{1-\left( \dfrac{15}{48} \right)} \\
& \Rightarrow \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{9+5}{12}}{\left( \dfrac{48-15}{48} \right)} \\
& \Rightarrow \tan \left( 2\alpha \right)=\dfrac{\dfrac{14}{1}}{\dfrac{33}{4}}=\dfrac{14\times 4}{33}=\dfrac{56}{33} \\
\end{align}\]
Hence the value of $\tan \left( 2\alpha \right)=\dfrac{56}{33}$
So, the correct answer is “Option A”.
Note: Now we in such sums we can skip evaluating each trigonometric ratio with the help of identities. We know that tan is the ratio of opposite side and adjacent side. Now we can find the length if hypotenuse using Pythagoras theorem. Once we have the length of all three sides we can easily find other trigonometric ratios.
Now we know that ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$ , ${{\tan }^{2}}x+1={{\sec }^{2}}x$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Using these identities we can find the value of $\tan \left( \alpha +\beta \right)$ and $\tan \left( \alpha -\beta \right)$ . Now we have $\tan \left( 2\alpha \right)=\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)$ and $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ . hence we can get the value of $\tan 2\alpha $
Complete step by step answer:
Now first consider $\cos \left( \alpha +\beta \right)=\dfrac{4}{5}$
Squaring the equation on both sides we get
${{\cos }^{2}}\left( \alpha +\beta \right)=\dfrac{16}{25}$
Taking inverse on both sides we get
$\dfrac{1}{{{\cos }^{2}}\left( \alpha +\beta \right)}=\dfrac{25}{16}$
Now we know that ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$
Hence we get
${{\sec }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}$
Now we have identity ${{\tan }^{2}}x+1={{\sec }^{2}}x$ using this we get.
$\begin{align}
& 1+{{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16} \\
& \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25}{16}-1 \\
& \Rightarrow {{\tan }^{2}}\left( \alpha +\beta \right)=\dfrac{25-16}{16}=\dfrac{9}{16} \\
& \Rightarrow \tan \left( \alpha +\beta \right)=\pm \dfrac{3}{4} \\
\end{align}$
Now since we have $0\le \alpha ,\beta \le \dfrac{\pi }{4}$ we can say $0\le \alpha +\beta \le \dfrac{\pi }{2}$ and tan is positive in first quadrant.
Hence we get $\tan \left( \alpha +\beta \right)=\dfrac{3}{4}...............(1)$
Now consider $\sin \left( \alpha -\beta \right)=\dfrac{5}{13}$
Now squaring on both sides we get ${{\sin }^{2}}\left( \alpha -\beta \right)=\dfrac{25}{169}$
Now we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
Hence we get \[{{\cos }^{2}}\left( \alpha -\beta \right)+\dfrac{25}{69}=1\]
Hence we get
\[\begin{align}
& {{\cos }^{2}}\left( \alpha -\beta \right)=1-\dfrac{25}{169} \\
& \Rightarrow {{\cos }^{2}}\left( \alpha -\beta \right)=\dfrac{169-25}{169}=\dfrac{144}{169} \\
\end{align}\]
Now if we take inverse on both sides we get.
$\dfrac{1}{{{\cos }^{2}}\left( \alpha -\beta \right)}=\dfrac{169}{144}$
Now we have ${{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x}$ using this identity we get
${{\sec }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}$
Now we have the identity we get ${{\tan }^{2}}x+1={{\sec }^{2}}x$ . hence we get
$\begin{align}
& 1+{{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144} \\
& \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169}{144}-1 \\
& \Rightarrow {{\tan }^{2}}\left( \alpha -\beta \right)=\dfrac{169-144}{144}=\dfrac{25}{144} \\
& \Rightarrow \tan \left( \alpha -\beta \right)=\pm \dfrac{5}{12} \\
\end{align}$
Now we have $0\le \alpha ,\beta \le \dfrac{\pi }{4}$
Hence $\dfrac{-\pi }{4}\le \alpha -\beta \le \dfrac{\pi }{4}$
Now the angle $\alpha -\beta $ lies in the fourth of the first quadrant.
Now since $\sin \left( \alpha -\beta \right)$ is positive we have $\alpha -\beta $ is in first quadrant
And we know that the first quadrant tan is positive.
Hence we have
$\tan \left( \alpha -\beta \right)=\dfrac{5}{12}.......................\left( 2 \right)$
Now consider $\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)$
Now we know that $\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$
Hence we get
\[\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\tan \left( \alpha +\beta \right)+\tan \left( \alpha -\beta \right)}{1-\tan \left( \alpha +\beta \right)\tan \left( \alpha -\beta \right)}\]
Now from equation (1) and equation (2) we get
\[\tan \left( \alpha +\beta +\left( \alpha -\beta \right) \right)=\dfrac{\dfrac{3}{4}+\dfrac{5}{12}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{5}{12} \right)}\]
Now taking LCM we get
\[\begin{align}
& \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{3\times 3}{4\times 3}+\dfrac{5}{12}}{1-\left( \dfrac{15}{48} \right)} \\
& \Rightarrow \tan \left( \alpha +\beta +\alpha -\beta \right)=\dfrac{\dfrac{9+5}{12}}{\left( \dfrac{48-15}{48} \right)} \\
& \Rightarrow \tan \left( 2\alpha \right)=\dfrac{\dfrac{14}{1}}{\dfrac{33}{4}}=\dfrac{14\times 4}{33}=\dfrac{56}{33} \\
\end{align}\]
Hence the value of $\tan \left( 2\alpha \right)=\dfrac{56}{33}$
So, the correct answer is “Option A”.
Note: Now we in such sums we can skip evaluating each trigonometric ratio with the help of identities. We know that tan is the ratio of opposite side and adjacent side. Now we can find the length if hypotenuse using Pythagoras theorem. Once we have the length of all three sides we can easily find other trigonometric ratios.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

