
Let $ \cos (\alpha + \beta ) = $ $ \dfrac{4}{5} $ and let $ \sin (\alpha - \beta ) = $ $ \dfrac{5}{{13}} $ , where 0 ≤ α, β ≤ $ \dfrac{\pi }{4} $ , then $ \tan 2\alpha $ is equal to
A. $ \dfrac{{20}}{7} $
B. \[\dfrac{{25}}{{16}}\]
C. $ \dfrac{{56}}{{33}} $
D. $ \dfrac{{19}}{{12}} $
Answer
564.9k+ views
Hint: We know the cosine of any angle is the ratio of the base to hypotenuse in a right angled triangle. Similarly, sine of any angle is the ratio of the opposite side to hypotenuse in a right angled triangle. Further, we will use Pythagoras theorem to calculate the other trigonometry ratio which is $ \tan 2\alpha $ .
Formula Used: The following formula is used to get to the final answer,
$ \tan (\alpha + \beta ) = $ $ \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} $
Complete step-by-step answer:
According to the given information, we have
The first function is $ \cos (\alpha + \beta ) = $ $ \dfrac{4}{5} $
Also, we know $ \cos (\alpha + \beta ) = \dfrac{4}{5} $
Therefore take the base to be 4k and hypotenuse as 5k, where k is a constant.
Further, perpendicular = $ \sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {base} \right)}^2}} $
$ \Rightarrow \sqrt {{{(5k)}^2} - {{(4k)}^2}} $ $ = \sqrt {9{k^2}} $
Finally we get the perpendicular to be 3k.
Now for a right angled triangle ABC we know that,
$ \tan (\alpha + \beta ) = $ $ \dfrac{3}{4} $ $ ...(1) $
The second function is $ \sin (\alpha - \beta ) = $ $ \dfrac{5}{{13}} $
Also, we know $ \sin (\alpha - \beta ) = \dfrac{5}{{13}} $
Therefore, take the perpendicular to be 5k and hypotenuse as 13k, where k is a constant.
Further, base = $ \sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {perpendicular} \right)}^2}} $
$ \Rightarrow \sqrt {{{(13k)}^2} - {{(5k)}^2}} $ $ = \sqrt {144{k^2}} $
Finally we get the base to be 12k.
Now for a right angled triangle ABC we know that,
Hence we get,
$ \tan (\alpha - \beta ) = $ $ \dfrac{5}{{12}} $ $ ...(2) $
According to the given data,
The following formula is used to get,
$ \tan (\alpha + \beta ) = $ $ \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} $
$ \tan ((\alpha + \beta ) + (\alpha - \beta )) $ = $ \dfrac{{\tan (\alpha + \beta ) + \tan (\alpha - \beta )}}{{1 - \tan (\alpha + \beta )\tan (\alpha - \beta )}} $
On simplifying further we get,
$ \tan 2\alpha $ $ = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}} $
$ \Rightarrow \dfrac{{\dfrac{{36 + 20}}{{48}}}}{{\dfrac{{48 - 15}}{{48}}}} $ $ = \dfrac{{56}}{{33}} $
So, the correct answer is “$ \dfrac{{56}}{{33}} $ ”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Students should be aware of applications of the trigonometric values in order to simplify the given equation.
Formula Used: The following formula is used to get to the final answer,
$ \tan (\alpha + \beta ) = $ $ \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} $
Complete step-by-step answer:
According to the given information, we have
The first function is $ \cos (\alpha + \beta ) = $ $ \dfrac{4}{5} $
Also, we know $ \cos (\alpha + \beta ) = \dfrac{4}{5} $
Therefore take the base to be 4k and hypotenuse as 5k, where k is a constant.
Further, perpendicular = $ \sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {base} \right)}^2}} $
$ \Rightarrow \sqrt {{{(5k)}^2} - {{(4k)}^2}} $ $ = \sqrt {9{k^2}} $
Finally we get the perpendicular to be 3k.
Now for a right angled triangle ABC we know that,
$ \tan (\alpha + \beta ) = $ $ \dfrac{3}{4} $ $ ...(1) $
The second function is $ \sin (\alpha - \beta ) = $ $ \dfrac{5}{{13}} $
Also, we know $ \sin (\alpha - \beta ) = \dfrac{5}{{13}} $
Therefore, take the perpendicular to be 5k and hypotenuse as 13k, where k is a constant.
Further, base = $ \sqrt {{{(hypotenuse)}^2}\;-{\text{ }}{{\left( {perpendicular} \right)}^2}} $
$ \Rightarrow \sqrt {{{(13k)}^2} - {{(5k)}^2}} $ $ = \sqrt {144{k^2}} $
Finally we get the base to be 12k.
Now for a right angled triangle ABC we know that,
Hence we get,
$ \tan (\alpha - \beta ) = $ $ \dfrac{5}{{12}} $ $ ...(2) $
According to the given data,
The following formula is used to get,
$ \tan (\alpha + \beta ) = $ $ \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }} $
$ \tan ((\alpha + \beta ) + (\alpha - \beta )) $ = $ \dfrac{{\tan (\alpha + \beta ) + \tan (\alpha - \beta )}}{{1 - \tan (\alpha + \beta )\tan (\alpha - \beta )}} $
On simplifying further we get,
$ \tan 2\alpha $ $ = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}} $
$ \Rightarrow \dfrac{{\dfrac{{36 + 20}}{{48}}}}{{\dfrac{{48 - 15}}{{48}}}} $ $ = \dfrac{{56}}{{33}} $
So, the correct answer is “$ \dfrac{{56}}{{33}} $ ”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Students should be aware of applications of the trigonometric values in order to simplify the given equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

