
Let $B = {A^3} - 2{A^2} + 3A - I$ where $I$ is a unit matrix and $A = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$ then the transpose of matrix $B$ is equal to
A.$\left[ {\begin{array}{*{20}{c}}
8&{14}&7 \\
{21}&1&{ - 7} \\
{14}&{21}&8
\end{array}} \right]$
B.$\left[ {\begin{array}{*{20}{c}}
2&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]$
C.$\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
D.$\left[ {\begin{array}{*{20}{c}}
3&1&0 \\
1&1&0 \\
3&1&0
\end{array}} \right]$
Answer
526.2k+ views
Hint: We have been given a $3 \times 3$ matrix $A$ using which we have to find the matrix $B$ as given in the equation $B = {A^3} - 2{A^2} + 3A - I$. $I$ is a unit matrix, i.e. $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$. We can evaluate ${A^3}$ and ${A^2}$ by multiplication of the matrix. The transpose of a matrix is a matrix where the rows and columns of a given matrix are interchanged with each other.
Complete step-by-step answer:
We have been given a matrix $A = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$. Using this matrix we have to find the matrix $B$ using the equation $B = {A^3} - 2{A^2} + 3A - I$, where $I$ is a unit matrix.
Since $I$ is a unit matrix, $I$ in this case will be of the order same as that of matrix $A$, i.e. $3 \times 3$.
Thus, $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
We can find ${A^2}$ as multiplication of matrix $A$ with itself, i.e. ${A^2} = A.A$
We can perform the multiplication of the matrix to find the square as follows,
${A^2} = A.A$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{(1 \times 1) + (3 \times 2) + (2 \times 1)}&{(1 \times 3) + (3 \times 0) + (2 \times - 1)}&{(1 \times 2) + (3 \times 3) + (2 \times 1)} \\
{(2 \times 1) + (0 \times 2) + (3 \times 1)}&{(2 \times 3) + (0 \times 0) + (3 \times - 1)}&{(2 \times 2) + (0 \times 3) + (3 \times 1)} \\
{(1 \times 1) + ( - 1 \times 2) + (1 \times 1)}&{(1 \times 3) + ( - 1 \times 0) + (1 \times - 1)}&{(1 \times 2) + ( - 1 \times 3) + (1 \times 1)}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 2}&{3 + 0 - 2}&{2 + 9 + 2} \\
{2 + 0 + 3}&{6 + 0 - 3}&{4 + 0 + 3} \\
{1 - 2 + 1}&{3 + 0 - 1}&{2 - 3 + 1}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
Thus, we get ${A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
Similarly, we can find ${A^3}$ as multiplication of matrix $A$ with ${A^2}$, i.e. ${A^3} = {A^2}.A$
We can perform the multiplication of the matrix to find the cube as follows,
${A^3} = {A^2}.A$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{(9 \times 1) + (1 \times 2) + (13 \times 1)}&{(9 \times 3) + (1 \times 0) + (13 \times - 1)}&{(9 \times 2) + (1 \times 3) + (13 \times 1)} \\
{(5 \times 1) + (3 \times 2) + (7 \times 1)}&{(5 \times 3) + (3 \times 0) + (7 \times - 1)}&{(5 \times 2) + (3 \times 3) + (7 \times 1)} \\
{(0 \times 1) + (2 \times 2) + (0 \times 1)}&{(0 \times 3) + (2 \times 0) + (0 \times - 1)}&{(0 \times 2) + (2 \times 3) + (0 \times 1)}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{9 + 2 + 13}&{27 + 0 - 13}&{18 + 3 + 13} \\
{5 + 6 + 7}&{15 + 0 - 7}&{10 + 9 + 7} \\
{0 + 4 + 0}&{0 + 0 - 0}&{0 + 6 + 0}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
Thus, we get ${A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
Now we will use the given equation $B = {A^3} - 2{A^2} + 3A - I$ to find the matrix $B$.
We can use the matrix ${A^2}$ and ${A^3}$ in the given equation to find the matrix $B$.
Here, ${A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
${A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
Thus, we can write,
\[B = {A^3} - 2{A^2} + 3A - I\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - 2.\left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right] + 3.\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{9 \times 2}&{1 \times 2}&{13 \times 2} \\
{5 \times 2}&{3 \times 2}&{7 \times 2} \\
{0 \times 2}&{2 \times 2}&{0 \times 2}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{1 \times 3}&{3 \times 3}&{2 \times 3} \\
{2 \times 3}&{0 \times 3}&{3 \times 3} \\
{1 \times 3}&{ - 1 \times 3}&{1 \times 3}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{18}&2&{26} \\
{10}&6&{14} \\
0&4&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&9&6 \\
6&0&9 \\
3&{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24 - 18 + 3 - 1}&{14 - 2 + 9 - 0}&{34 - 26 + 6 - 0} \\
{18 - 10 + 6 - 0}&{8 - 6 + 0 - 1}&{26 - 14 + 9 - 0} \\
{4 - 0 + 3 - 0}&{0 - 4 - 3 - 0}&{6 - 0 + 3 - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]\]
We got the matrix \[B = \left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]\]
We can find the transpose of the matrix $B$ by interchanging the rows and columns as follows,
${B^T} = {\left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]^T} = \left[ {\begin{array}{*{20}{c}}
8&{14}&7 \\
{21}&1&{ - 7} \\
{14}&{21}&8
\end{array}} \right]$
Thus, we get the resultant matrix ${B^T} = \left[ {\begin{array}{*{20}{c}}
8&{14}&7 \\
{21}&1&{ - 7} \\
{14}&{21}&8
\end{array}} \right]$
Hence, option A is correct in the given question.
So, the correct answer is “Option A”.
Note: The order of the square or cube of a square matrix is same as that of the given matrix. To find the cube of a matrix, we can either use ${A^3} = {A^2}.A$ or ${A^3} = A.{A^2}$, both will yield the same result. We take the order of the unit matrix same as that of the given matrix, i.e. $3 \times 3$ in this case. The addition and subtraction of the terms containing matrices are simply done with corresponding elements.
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$. We can evaluate ${A^3}$ and ${A^2}$ by multiplication of the matrix. The transpose of a matrix is a matrix where the rows and columns of a given matrix are interchanged with each other.
Complete step-by-step answer:
We have been given a matrix $A = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$. Using this matrix we have to find the matrix $B$ using the equation $B = {A^3} - 2{A^2} + 3A - I$, where $I$ is a unit matrix.
Since $I$ is a unit matrix, $I$ in this case will be of the order same as that of matrix $A$, i.e. $3 \times 3$.
Thus, $I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
We can find ${A^2}$ as multiplication of matrix $A$ with itself, i.e. ${A^2} = A.A$
We can perform the multiplication of the matrix to find the square as follows,
${A^2} = A.A$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{(1 \times 1) + (3 \times 2) + (2 \times 1)}&{(1 \times 3) + (3 \times 0) + (2 \times - 1)}&{(1 \times 2) + (3 \times 3) + (2 \times 1)} \\
{(2 \times 1) + (0 \times 2) + (3 \times 1)}&{(2 \times 3) + (0 \times 0) + (3 \times - 1)}&{(2 \times 2) + (0 \times 3) + (3 \times 1)} \\
{(1 \times 1) + ( - 1 \times 2) + (1 \times 1)}&{(1 \times 3) + ( - 1 \times 0) + (1 \times - 1)}&{(1 \times 2) + ( - 1 \times 3) + (1 \times 1)}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 2}&{3 + 0 - 2}&{2 + 9 + 2} \\
{2 + 0 + 3}&{6 + 0 - 3}&{4 + 0 + 3} \\
{1 - 2 + 1}&{3 + 0 - 1}&{2 - 3 + 1}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
Thus, we get ${A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
Similarly, we can find ${A^3}$ as multiplication of matrix $A$ with ${A^2}$, i.e. ${A^3} = {A^2}.A$
We can perform the multiplication of the matrix to find the cube as follows,
${A^3} = {A^2}.A$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{(9 \times 1) + (1 \times 2) + (13 \times 1)}&{(9 \times 3) + (1 \times 0) + (13 \times - 1)}&{(9 \times 2) + (1 \times 3) + (13 \times 1)} \\
{(5 \times 1) + (3 \times 2) + (7 \times 1)}&{(5 \times 3) + (3 \times 0) + (7 \times - 1)}&{(5 \times 2) + (3 \times 3) + (7 \times 1)} \\
{(0 \times 1) + (2 \times 2) + (0 \times 1)}&{(0 \times 3) + (2 \times 0) + (0 \times - 1)}&{(0 \times 2) + (2 \times 3) + (0 \times 1)}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{9 + 2 + 13}&{27 + 0 - 13}&{18 + 3 + 13} \\
{5 + 6 + 7}&{15 + 0 - 7}&{10 + 9 + 7} \\
{0 + 4 + 0}&{0 + 0 - 0}&{0 + 6 + 0}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
Thus, we get ${A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
Now we will use the given equation $B = {A^3} - 2{A^2} + 3A - I$ to find the matrix $B$.
We can use the matrix ${A^2}$ and ${A^3}$ in the given equation to find the matrix $B$.
Here, ${A^3} = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right]$
${A^2} = \left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right]$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right]$
$I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
Thus, we can write,
\[B = {A^3} - 2{A^2} + 3A - I\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - 2.\left[ {\begin{array}{*{20}{c}}
9&1&{13} \\
5&3&7 \\
0&2&0
\end{array}} \right] + 3.\left[ {\begin{array}{*{20}{c}}
1&3&2 \\
2&0&3 \\
1&{ - 1}&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{9 \times 2}&{1 \times 2}&{13 \times 2} \\
{5 \times 2}&{3 \times 2}&{7 \times 2} \\
{0 \times 2}&{2 \times 2}&{0 \times 2}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{1 \times 3}&{3 \times 3}&{2 \times 3} \\
{2 \times 3}&{0 \times 3}&{3 \times 3} \\
{1 \times 3}&{ - 1 \times 3}&{1 \times 3}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24}&{14}&{34} \\
{18}&8&{26} \\
4&0&6
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{18}&2&{26} \\
{10}&6&{14} \\
0&4&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&9&6 \\
6&0&9 \\
3&{ - 3}&3
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
{24 - 18 + 3 - 1}&{14 - 2 + 9 - 0}&{34 - 26 + 6 - 0} \\
{18 - 10 + 6 - 0}&{8 - 6 + 0 - 1}&{26 - 14 + 9 - 0} \\
{4 - 0 + 3 - 0}&{0 - 4 - 3 - 0}&{6 - 0 + 3 - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]\]
We got the matrix \[B = \left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]\]
We can find the transpose of the matrix $B$ by interchanging the rows and columns as follows,
${B^T} = {\left[ {\begin{array}{*{20}{c}}
8&{21}&{14} \\
{14}&1&{21} \\
7&{ - 7}&8
\end{array}} \right]^T} = \left[ {\begin{array}{*{20}{c}}
8&{14}&7 \\
{21}&1&{ - 7} \\
{14}&{21}&8
\end{array}} \right]$
Thus, we get the resultant matrix ${B^T} = \left[ {\begin{array}{*{20}{c}}
8&{14}&7 \\
{21}&1&{ - 7} \\
{14}&{21}&8
\end{array}} \right]$
Hence, option A is correct in the given question.
So, the correct answer is “Option A”.
Note: The order of the square or cube of a square matrix is same as that of the given matrix. To find the cube of a matrix, we can either use ${A^3} = {A^2}.A$ or ${A^3} = A.{A^2}$, both will yield the same result. We take the order of the unit matrix same as that of the given matrix, i.e. $3 \times 3$ in this case. The addition and subtraction of the terms containing matrices are simply done with corresponding elements.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

