
Let A=R-3 and B=R-1.Consider the function f: A \[\to\] B defined by \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}.\] Is f one-one and onto?
Answer
589.8k+ views
Hint: We consider \[{{x}_{1}}\] and \[{{x}_{2}}\] from the range of A. Put the value of \[{{x}_{1}}\] and \[{{x}_{2}}\] in \[\text{f(x)}\] and make
\[\text{f(}{{\text{x}}_{1}}\text{)=f(}{{\text{x}}_{2}}\text{)}\] . If \[{{x}_{1}}\] and \[{{x}_{2}}\] becomes equal then, the given function is a one-one function. Assume, \[\text{y=}\dfrac{(x-2)}{(x-3)}\] and then find the value of x in terms of y. Then, put the value of x in the expression\[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\]. If we get, \[\text{f(x)=y}\] then our function is onto.
Complete step by step answer:
We have, A=R-3 and B=R-1 and f: A \[\to\] B
such that, \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}.\]
For a one-one function, we need to prove \[{{x}_{1}}={{x}_{2}}\] .
\[\text{f(}{{\text{x}}_{1}}\text{)=f(}{{\text{x}}_{2}}\text{)}\]
\[\begin{align}
& \Rightarrow \dfrac{({{x}_{1}}-2)}{({{x}_{1}}-3)}=\dfrac{({{x}_{2}}-2)}{({{x}_{2}}-3)} \\
& \Rightarrow ({{x}_{1}}-2)({{x}_{2}}-3)=({{x}_{1}}-3)({{x}_{2}}-2) \\
& \Rightarrow -3{{x}_{1}}-2{{x}_{2}}=-3{{x}_{2}}-2{{x}_{1}} \\
& \Rightarrow -{{x}_{1}}=-{{x}_{2}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
So, \[\text{f(x)}\] is a one-one function.
\[\begin{align}
& \text{f(x)=}\dfrac{(x-2)}{(x-3)} \\
& \text{y=}\dfrac{(x-2)}{(x-3)} \\
& \Rightarrow y(x-3)=(x-2) \\
& \Rightarrow xy-3y=x-2 \\
& \Rightarrow x(y-1)=3y-2 \\
& \Rightarrow x=\dfrac{(3y-2)}{(y-1)} \\
\end{align}\]
We have \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}.\]
Putting the value of x in \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\], we get
\[\text{f(x)=}\dfrac{(\dfrac{(3y-2)}{(y-1)}-2)}{(\dfrac{(3y-2)}{(y-1)}-3)}\]
\[=\dfrac{\dfrac{(3y-2)}{(y-1)}-2}{\dfrac{(3y-2)}{(y-1)}-3}\]
\[\begin{align}
& =\dfrac{\dfrac{(3y-2)-2(y-1)}{(y-1)}}{\dfrac{(3y-2)-3(y-1)}{(y-1)}} \\
& =y \\
& f(x)=y \\
\end{align}\]
f(x) is onto.
Therefore, we can say that f(x) is one-one and onto.
Note: In this question, one can make mistakes in proving onto function. Just follow the basic steps for it. For onto function we should have preimage. For that assume, \[\text{y=}\dfrac{(x-2)}{(x-3)}\] and then find the value of x in terms of y. Then, put the value of x in the expression\[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\]. If we get, \[\text{f(x)=y}\] then our function is onto.
\[\text{f(}{{\text{x}}_{1}}\text{)=f(}{{\text{x}}_{2}}\text{)}\] . If \[{{x}_{1}}\] and \[{{x}_{2}}\] becomes equal then, the given function is a one-one function. Assume, \[\text{y=}\dfrac{(x-2)}{(x-3)}\] and then find the value of x in terms of y. Then, put the value of x in the expression\[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\]. If we get, \[\text{f(x)=y}\] then our function is onto.
Complete step by step answer:
We have, A=R-3 and B=R-1 and f: A \[\to\] B
such that, \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}.\]
For a one-one function, we need to prove \[{{x}_{1}}={{x}_{2}}\] .
\[\text{f(}{{\text{x}}_{1}}\text{)=f(}{{\text{x}}_{2}}\text{)}\]
\[\begin{align}
& \Rightarrow \dfrac{({{x}_{1}}-2)}{({{x}_{1}}-3)}=\dfrac{({{x}_{2}}-2)}{({{x}_{2}}-3)} \\
& \Rightarrow ({{x}_{1}}-2)({{x}_{2}}-3)=({{x}_{1}}-3)({{x}_{2}}-2) \\
& \Rightarrow -3{{x}_{1}}-2{{x}_{2}}=-3{{x}_{2}}-2{{x}_{1}} \\
& \Rightarrow -{{x}_{1}}=-{{x}_{2}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
So, \[\text{f(x)}\] is a one-one function.
\[\begin{align}
& \text{f(x)=}\dfrac{(x-2)}{(x-3)} \\
& \text{y=}\dfrac{(x-2)}{(x-3)} \\
& \Rightarrow y(x-3)=(x-2) \\
& \Rightarrow xy-3y=x-2 \\
& \Rightarrow x(y-1)=3y-2 \\
& \Rightarrow x=\dfrac{(3y-2)}{(y-1)} \\
\end{align}\]
We have \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}.\]
Putting the value of x in \[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\], we get
\[\text{f(x)=}\dfrac{(\dfrac{(3y-2)}{(y-1)}-2)}{(\dfrac{(3y-2)}{(y-1)}-3)}\]
\[=\dfrac{\dfrac{(3y-2)}{(y-1)}-2}{\dfrac{(3y-2)}{(y-1)}-3}\]
\[\begin{align}
& =\dfrac{\dfrac{(3y-2)-2(y-1)}{(y-1)}}{\dfrac{(3y-2)-3(y-1)}{(y-1)}} \\
& =y \\
& f(x)=y \\
\end{align}\]
f(x) is onto.
Therefore, we can say that f(x) is one-one and onto.
Note: In this question, one can make mistakes in proving onto function. Just follow the basic steps for it. For onto function we should have preimage. For that assume, \[\text{y=}\dfrac{(x-2)}{(x-3)}\] and then find the value of x in terms of y. Then, put the value of x in the expression\[\text{f(x)=}\dfrac{(x-2)}{(x-3)}\]. If we get, \[\text{f(x)=y}\] then our function is onto.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

