
Let \[\alpha \in \left( 0,{\pi }/{2}\; \right)\] be fixed. If the integral $\int{\dfrac{\tan x+\tan \alpha }{\tan x-\tan \alpha }dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$ , where C is a constant of integration, then the functions $A\left( x \right)$ and $B\left( x \right)$ are respectively.
(A) $x-\alpha $ and ${{\log }_{e}}\left| \cos \left( x-\alpha \right) \right|$
(B) $x+\alpha $ and ${{\log }_{e}}\left| \sin \left( x-\alpha \right) \right|$
(C) $x-\alpha $ and ${{\log }_{e}}\left| \sin \left( x-\alpha \right) \right|$
(D) $x+\alpha $ and ${{\log }_{e}}\left| \sin \left( x+\alpha \right) \right|$
Answer
509.4k+ views
Hint: We start solving this problem by considering the given integral and we first write $\tan x$ in terms of $\sin x$ and $\cos x$ by using the formula $\tan x=\dfrac{\sin x}{\cos x}$. Then we solve the obtained expression using the formulae of sine of sum of two angles and sine of difference of two angles, that is, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ .Then we convert the term $x+\alpha $ as $\left( x-\alpha \right)+2\alpha $ as all the options contain $x-\alpha $ . After getting the new expression, we further solve the problem by using the formula $\cot x=\dfrac{\cos x}{\sin x}$ . Then we use the formula $\int{\cot x=\ln \left| \sin x \right|+C}$ . Then we finally convert the terms on the left hand side in terms of $\cos 2\alpha $ and $\sin 2\alpha $ to get the functions $A\left( x \right)$ and $B\left( x \right)$.
Complete step by step answer:
Let us consider the given equation,
$\int{\dfrac{\tan x+\tan \alpha }{\tan x-\tan \alpha }dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
We convert $\tan x$ into the terms of $\sin x$ and $\cos x$.
Let us consider the formula $\tan x=\dfrac{\sin x}{\cos x}$.
By using the above formula, we get,
$\begin{align}
& \int{\dfrac{\dfrac{\sin x}{\cos x}+\dfrac{\sin \alpha }{\cos \alpha }}{\dfrac{\sin x}{\cos x}-\dfrac{\sin \alpha }{\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \\
& \int{\dfrac{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\cos x.\cos \alpha }}{\dfrac{\sin x\cos \alpha -\sin \alpha \cos x}{\cos x.\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \\
& \int{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\sin x\cos \alpha -\sin \alpha \cos x}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formulae,
$\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
So, by using the above formula, we get,
$\int{\dfrac{\sin \left( x+\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Now, let us write $x+\alpha $ as $\left( x-\alpha \right)+2\alpha $.
So, we get,
$\int{\dfrac{\sin \left( \left( x-\alpha \right)+2\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Let us again consider the formula, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$.
Using the above formula, we get,
$\begin{align}
& \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha +\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha }{\sin \left( x-\alpha \right)}+\dfrac{\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)}dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formula $\cot x=\dfrac{\cos x}{\sin x}$.
By applying the above formula, we get,
$\begin{align}
& \left( \int{\cos 2\alpha +\cot \left( x-\alpha \right)\sin 2\alpha } \right)dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \int{\cos 2\alpha }dx+\int{\cot \left( x-\alpha \right)\sin 2\alpha }dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& x.\cos 2\alpha +\sin 2\alpha \int{\cot \left( x-\alpha \right)dx=}A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formula $\int{\cot x=\ln \left| \sin x \right|+C}$
By using the above formula, we get,
$x.\cos 2\alpha +\left( \sin 2\alpha \times \ln \left| \sin \left( x-\alpha \right) \right| \right)+C=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Now, by comparing on both the sides, let us equate the corresponding terms, we get,
$A\left( x \right)=x$ and $B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|$
Therefore, the required answer is $A\left( x \right)=x$ and $B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|$
Note: The possibilities for making mistakes in this type of problems are, one may make mistakes and feel so clumsy while converting the given integral to an easiest form to solve. One should get an idea that we have to convert the term $x+\alpha $ as $\left( x-\alpha \right)+2\alpha $ while solving the integral.
Complete step by step answer:
Let us consider the given equation,
$\int{\dfrac{\tan x+\tan \alpha }{\tan x-\tan \alpha }dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
We convert $\tan x$ into the terms of $\sin x$ and $\cos x$.
Let us consider the formula $\tan x=\dfrac{\sin x}{\cos x}$.
By using the above formula, we get,
$\begin{align}
& \int{\dfrac{\dfrac{\sin x}{\cos x}+\dfrac{\sin \alpha }{\cos \alpha }}{\dfrac{\sin x}{\cos x}-\dfrac{\sin \alpha }{\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \\
& \int{\dfrac{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\cos x.\cos \alpha }}{\dfrac{\sin x\cos \alpha -\sin \alpha \cos x}{\cos x.\cos \alpha }}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \\
& \int{\dfrac{\sin x\cos \alpha +\sin \alpha \cos x}{\sin x\cos \alpha -\sin \alpha \cos x}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formulae,
$\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
So, by using the above formula, we get,
$\int{\dfrac{\sin \left( x+\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Now, let us write $x+\alpha $ as $\left( x-\alpha \right)+2\alpha $.
So, we get,
$\int{\dfrac{\sin \left( \left( x-\alpha \right)+2\alpha \right)}{\sin \left( x-\alpha \right)}dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Let us again consider the formula, $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$.
Using the above formula, we get,
$\begin{align}
& \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha +\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)dx}=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \int{\left( \dfrac{\sin \left( x-\alpha \right)\cos 2\alpha }{\sin \left( x-\alpha \right)}+\dfrac{\cos \left( x-\alpha \right)\sin 2\alpha }{\sin \left( x-\alpha \right)} \right)}dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formula $\cot x=\dfrac{\cos x}{\sin x}$.
By applying the above formula, we get,
$\begin{align}
& \left( \int{\cos 2\alpha +\cot \left( x-\alpha \right)\sin 2\alpha } \right)dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& \int{\cos 2\alpha }dx+\int{\cot \left( x-\alpha \right)\sin 2\alpha }dx=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
& x.\cos 2\alpha +\sin 2\alpha \int{\cot \left( x-\alpha \right)dx=}A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C \\
\end{align}$
Now, let us consider the formula $\int{\cot x=\ln \left| \sin x \right|+C}$
By using the above formula, we get,
$x.\cos 2\alpha +\left( \sin 2\alpha \times \ln \left| \sin \left( x-\alpha \right) \right| \right)+C=A\left( x \right)\cos 2\alpha +B\left( x \right)\sin 2\alpha +C$
Now, by comparing on both the sides, let us equate the corresponding terms, we get,
$A\left( x \right)=x$ and $B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|$
Therefore, the required answer is $A\left( x \right)=x$ and $B\left( x \right)=\ln \left| \sin \left( x-\alpha \right) \right|$
Note: The possibilities for making mistakes in this type of problems are, one may make mistakes and feel so clumsy while converting the given integral to an easiest form to solve. One should get an idea that we have to convert the term $x+\alpha $ as $\left( x-\alpha \right)+2\alpha $ while solving the integral.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
