
Let $\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}$ where $n\in N,n>2$. Prove that for the complex numbers ${{z}_{1}},{{z}_{2}}$ , $\sum\limits_{r=0}^{n-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=n{{\left| {{z}_{1}} \right|}^{2}}$\[\]
Answer
586.2k+ views
Hint: The given expression $\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}$ is the expression for ${{n}^{\text{th}}}$ roots of unity. All the roots of unity with polynomial of degree $n$ are related by ${{\alpha }^{n}}=1$ and $1+\alpha +{{\alpha }^{2}}+...+{{\alpha }^{n-1}}=0$ . We use these relations when we apply the method induction to prove. We first prove the statement for $n=3$, then assume for $n=k$ and the prove again for $n=k+1.$\[\]
Complete step by step answer:
We know that any complex number $z=x+iy$ where $x$and $y$ are real numbers . The modulus of a complex number $z$ is the distance from the origin in the complex plane which is defined as $\left| z \right|=\left| x\pm iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$. We know that ${{\left| z \right|}^{2}}=z\overline{z}$. We are asked to prove the statement ,
\[\sum\limits_{r=0}^{n-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=n\left( {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \right)\]
We are given two complex numbers ${{z}_{1}},{{z}_{2}}$. We are given a complex number in Euler’s co-ordinates. We have for the natural number $n>2$,
\[\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}\]
We know that above expression the expression for ${{n}^{\text{th}}}$ roots of unit which means a solution of polynomial of equation ${{x}^{n}}=1$. We also know that ${{\alpha }^{n}}=1$ and $1+\alpha +{{\alpha }^{2}}+...+{{\alpha }^{n-1}}=0$. let us find ${{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}$ before we proceed. So we have
\[\begin{align}
& {{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}} \\
& =\left( {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right)\left( \overline{{{z}_{1}}}+{{\alpha }^{r}}\overline{{{z}_{2}}} \right) \\
& ={{z}_{1}}\overline{{{z}_{1}}}+{{\alpha }^{2r}}{{z}_{2}}\overline{{{z}_{2}}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\
& ={{\left| {{z}_{1}} \right|}^{2}}+{{\alpha }^{2r}}{{\left| {{z}_{2}} \right|}^{2}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\
\end{align}\]
We shall prove the statement the statement by induction. So we take prove for the first value. Let us expand the left hand side of the statement $n=3$ . When we take $n=3$ we shall get the three cube roots unity as ${{\alpha }^{0}}=1,{{\alpha }^{1}}=\alpha ,{{\alpha }^{2}}$ then we have$1+\alpha +{{\alpha }^{2}}=0,{{\alpha }^{4}}={{\alpha }^{3}}\times \alpha =1\times \alpha =\alpha $. Now we use it and proceed ,
\[\begin{align}
& \sum\limits_{r=0}^{3-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=\sum\limits_{r=0}^{2}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\
& ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{2}}{{z}_{2}} \right|}^{2}} \\
& =3{{\left| {{z}_{1}} \right|}^{2}}+\left( {{\alpha }^{2\times 0}}+{{\alpha }^{2\times 1}}+{{\alpha }^{2\times 2}} \right){{\left| {{z}_{2}} \right|}^{2}}+\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right)\left( {{\alpha }^{0}}+{{\alpha }^{1}}+{{\alpha }^{2}} \right) \\
& =3{{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
So the statement is true for $n=3$. Now we shall assume the statement is true for $n=k$ . So we have
\[\begin{align}
& \sum\limits_{r=0}^{k-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=k{{\left| {{z}_{1}} \right|}^{2}} \\
& \Rightarrow {{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}=\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
Now we have to prove for $n=k+1$ which means we have to prove ${{\sum\limits_{r=0}^{k}{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}}^{2}}=n{{\left| {{z}_{1}} \right|}^{2}}$. We have the ${{\left( k+1 \right)}^{\text{th}}}$ root as ${{\alpha }^{k}}=0$. We write the left hand side of the statement for $n=k+1$ and expand using truth of the statement for $n=k$ ,
\[\begin{align}
& \sum\limits_{r=0}^{k}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\
& ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{k}}{{z}_{2}} \right|}^{2}} \\
& =\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{1}} \right|}^{2}}\left( \because {{\alpha }^{k}}=0 \right) \\
& =k{{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
Now we have the statement is true for $n=3$ and if assume the statement is true for $n=k$ it implies that the statement is true for $n=k+1$. So by induction the statement is true for all $n\in N.$ Hence proved.\[\]
Note: We note that a complex number can also be written in Euler’s form as $z=r\cos \theta +ir\sin \theta =r{{e}^{i\theta }}$ where $r$ is the modulus and $\theta $ is the angle $z$ makes when joined with origin, otherwise known as argument $\theta =\arg \left( z \right)$. So the given $\alpha $ can be written $\alpha ={{e}^{i\dfrac{2\pi }{n}}}$.
Complete step by step answer:
We know that any complex number $z=x+iy$ where $x$and $y$ are real numbers . The modulus of a complex number $z$ is the distance from the origin in the complex plane which is defined as $\left| z \right|=\left| x\pm iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$. We know that ${{\left| z \right|}^{2}}=z\overline{z}$. We are asked to prove the statement ,
\[\sum\limits_{r=0}^{n-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=n\left( {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \right)\]
We are given two complex numbers ${{z}_{1}},{{z}_{2}}$. We are given a complex number in Euler’s co-ordinates. We have for the natural number $n>2$,
\[\alpha =\dfrac{\cos 2\pi }{n}+i\dfrac{\sin 2\pi }{n}\]
We know that above expression the expression for ${{n}^{\text{th}}}$ roots of unit which means a solution of polynomial of equation ${{x}^{n}}=1$. We also know that ${{\alpha }^{n}}=1$ and $1+\alpha +{{\alpha }^{2}}+...+{{\alpha }^{n-1}}=0$. let us find ${{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}$ before we proceed. So we have
\[\begin{align}
& {{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}} \\
& =\left( {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right)\left( \overline{{{z}_{1}}}+{{\alpha }^{r}}\overline{{{z}_{2}}} \right) \\
& ={{z}_{1}}\overline{{{z}_{1}}}+{{\alpha }^{2r}}{{z}_{2}}\overline{{{z}_{2}}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\
& ={{\left| {{z}_{1}} \right|}^{2}}+{{\alpha }^{2r}}{{\left| {{z}_{2}} \right|}^{2}}+{{\alpha }^{r}}\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right) \\
\end{align}\]
We shall prove the statement the statement by induction. So we take prove for the first value. Let us expand the left hand side of the statement $n=3$ . When we take $n=3$ we shall get the three cube roots unity as ${{\alpha }^{0}}=1,{{\alpha }^{1}}=\alpha ,{{\alpha }^{2}}$ then we have$1+\alpha +{{\alpha }^{2}}=0,{{\alpha }^{4}}={{\alpha }^{3}}\times \alpha =1\times \alpha =\alpha $. Now we use it and proceed ,
\[\begin{align}
& \sum\limits_{r=0}^{3-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=\sum\limits_{r=0}^{2}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\
& ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{2}}{{z}_{2}} \right|}^{2}} \\
& =3{{\left| {{z}_{1}} \right|}^{2}}+\left( {{\alpha }^{2\times 0}}+{{\alpha }^{2\times 1}}+{{\alpha }^{2\times 2}} \right){{\left| {{z}_{2}} \right|}^{2}}+\left( {{z}_{2}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}} \right)\left( {{\alpha }^{0}}+{{\alpha }^{1}}+{{\alpha }^{2}} \right) \\
& =3{{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
So the statement is true for $n=3$. Now we shall assume the statement is true for $n=k$ . So we have
\[\begin{align}
& \sum\limits_{r=0}^{k-1}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}}=k{{\left| {{z}_{1}} \right|}^{2}} \\
& \Rightarrow {{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}=\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
Now we have to prove for $n=k+1$ which means we have to prove ${{\sum\limits_{r=0}^{k}{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}}^{2}}=n{{\left| {{z}_{1}} \right|}^{2}}$. We have the ${{\left( k+1 \right)}^{\text{th}}}$ root as ${{\alpha }^{k}}=0$. We write the left hand side of the statement for $n=k+1$ and expand using truth of the statement for $n=k$ ,
\[\begin{align}
& \sum\limits_{r=0}^{k}{{{\left| {{z}_{1}}+{{\alpha }^{r}}{{z}_{2}} \right|}^{2}}} \\
& ={{\left| {{z}_{1}}+{{\alpha }^{0}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{1}}{{z}_{2}} \right|}^{2}}+...+{{\left| {{z}_{1}}+{{\alpha }^{k-1}}{{z}_{2}} \right|}^{2}}+{{\left| {{z}_{1}}+{{\alpha }^{k}}{{z}_{2}} \right|}^{2}} \\
& =\left( k-1 \right){{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{1}} \right|}^{2}}\left( \because {{\alpha }^{k}}=0 \right) \\
& =k{{\left| {{z}_{1}} \right|}^{2}} \\
\end{align}\]
Now we have the statement is true for $n=3$ and if assume the statement is true for $n=k$ it implies that the statement is true for $n=k+1$. So by induction the statement is true for all $n\in N.$ Hence proved.\[\]
Note: We note that a complex number can also be written in Euler’s form as $z=r\cos \theta +ir\sin \theta =r{{e}^{i\theta }}$ where $r$ is the modulus and $\theta $ is the angle $z$ makes when joined with origin, otherwise known as argument $\theta =\arg \left( z \right)$. So the given $\alpha $ can be written $\alpha ={{e}^{i\dfrac{2\pi }{n}}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

