
Let \[\alpha ,\beta ,\gamma \] be the roots of the cubic equation \[{a_0}{x^3} + 3{a_1}{x^2} + 3{a_2}x + {a_3} = 0\left( {{a_0} \ne 0} \right)\]. Then the value of \[{\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2}\] equals
A) \[\dfrac{{18\left( {{a_2}^2 - {a_0}{a_1}} \right)}}{{{a_0}^2}}\]
B) \[\dfrac{{18\left( {{a_2}^2 + {a_0}{a_1}} \right)}}{{{a_0}^2}}\]
C) \[\dfrac{{18\left( {{a_0}^2 - {a_1}{a_2}} \right)}}{{{a_0}^2}}\]
D) \[\dfrac{{18\left( {{a_1}^2 - {a_0}{a_2}} \right)}}{{{a_0}^2}}\]
Answer
555.9k+ views
Hint:
Here we will simply write the basic conditions of the roots of the cubic equation. Then we will expand the given equation and solve it. Then we will put the value of the roots conditions in the equation to get the value of the given equation.
Complete step by step solution:
Given cubic equation is \[{a_0}{x^3} + 3{a_1}{x^2} + 3{a_2}x + {a_3} = 0\left( {{a_0} \ne 0} \right)\].
It is given that \[\alpha ,\beta ,\gamma \] are the roots of the given cubic equation.
We know the three basic conditions of the roots of the cubic equation. Therefore, we get
\[\begin{array}{l}
\alpha + \beta + \gamma = \dfrac{{ - 3{a_1}}}{{{a_0}}}\\
\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{3{a_2}}}{{{a_0}}}\\
\alpha \beta \gamma = \dfrac{{ - {a_3}}}{{{a_0}}}
\end{array}\]
Now we have to find the value of \[{\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2}\]. So we will simply expand this equation by opening the square of the terms. Therefore, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \left( {{\alpha ^2} + {\beta ^2} - 2\alpha \beta } \right) + \left( {{\beta ^2} + {\gamma ^2} - 2\beta \gamma } \right) + \left( {{\alpha ^2} + {\gamma ^2} - 2\alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2}} \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
We know that \[{\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]. By this we will get the value of \[{\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]. Therefore, y putting this value in the above equation we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {{{\left( {\alpha + \beta + \gamma } \right)}^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)} \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\alpha + \beta + \gamma } \right)^2} - 4\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\alpha + \beta + \gamma } \right)^2} - 6\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
Now we will put the value of the \[\left( {\alpha + \beta + \gamma } \right)\] and \[\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\] in the above equation, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\dfrac{{ - 3{a_1}}}{{{a_0}}}} \right)^2} - 6\left( {\dfrac{{3{a_2}}}{{{a_0}}}} \right)\]
Now we will solve this equation, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {\dfrac{{9{a_1}^2}}{{{a_0}^2}}} \right) - \left( {\dfrac{{18{a_2}}}{{{a_0}}}} \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \left( {\dfrac{{18{a_1}^2}}{{{a_0}^2}}} \right) - \left( {\dfrac{{18{a_2}}}{{{a_0}}}} \right)\]
Now we will take \[\dfrac{{18}}{{{a_0}^2}}\] common from both the terms. Therefore, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \dfrac{{18}}{{{a_0}^2}}\left( {{a_1}^2 - {a_0}{a_2}} \right) = \dfrac{{18\left( {{a_1}^2 - {a_0}{a_2}} \right)}}{{{a_0}^2}}\]
Hence, the value of \[{\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2}\] is equals to \[\dfrac{{18\left( {{a_1}^2 - {a_0}{a_2}} \right)}}{{{a_0}^2}}\].
So, option D is the correct option.
Note:
Here we should note that the cubic equations are the equation in which the highest exponent of the variable is 3. In an equation the number of its roots is equal to the value of the highest exponent of the variable of that equation. That means for a cubic equation there are three roots of the equation. Apart from the cubic equations, equations are also categorized as quadratic equations, linear equations and so on. A quadratic equation is an equation in which the highest exponent of the variable is 2 whereas a linear equation has the highest degree of 1. So there are only two roots of the quadratic equation and one in the linear equation.
Representation of equations is done in the following manner:
Linear equation: \[ax+b=0\]
Quadratic equation: \[a{x^2} + bx + c = 0\]
Cubic equation: \[a{x^3} + b{x^2} + cx + d = 0\]
Here we will simply write the basic conditions of the roots of the cubic equation. Then we will expand the given equation and solve it. Then we will put the value of the roots conditions in the equation to get the value of the given equation.
Complete step by step solution:
Given cubic equation is \[{a_0}{x^3} + 3{a_1}{x^2} + 3{a_2}x + {a_3} = 0\left( {{a_0} \ne 0} \right)\].
It is given that \[\alpha ,\beta ,\gamma \] are the roots of the given cubic equation.
We know the three basic conditions of the roots of the cubic equation. Therefore, we get
\[\begin{array}{l}
\alpha + \beta + \gamma = \dfrac{{ - 3{a_1}}}{{{a_0}}}\\
\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{3{a_2}}}{{{a_0}}}\\
\alpha \beta \gamma = \dfrac{{ - {a_3}}}{{{a_0}}}
\end{array}\]
Now we have to find the value of \[{\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2}\]. So we will simply expand this equation by opening the square of the terms. Therefore, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \left( {{\alpha ^2} + {\beta ^2} - 2\alpha \beta } \right) + \left( {{\beta ^2} + {\gamma ^2} - 2\beta \gamma } \right) + \left( {{\alpha ^2} + {\gamma ^2} - 2\alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2}} \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
We know that \[{\left( {\alpha + \beta + \gamma } \right)^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} + 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]. By this we will get the value of \[{\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]. Therefore, y putting this value in the above equation we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {{{\left( {\alpha + \beta + \gamma } \right)}^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)} \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\alpha + \beta + \gamma } \right)^2} - 4\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right) - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\alpha + \beta + \gamma } \right)^2} - 6\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\]
Now we will put the value of the \[\left( {\alpha + \beta + \gamma } \right)\] and \[\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)\] in the above equation, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2{\left( {\dfrac{{ - 3{a_1}}}{{{a_0}}}} \right)^2} - 6\left( {\dfrac{{3{a_2}}}{{{a_0}}}} \right)\]
Now we will solve this equation, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = 2\left( {\dfrac{{9{a_1}^2}}{{{a_0}^2}}} \right) - \left( {\dfrac{{18{a_2}}}{{{a_0}}}} \right)\]
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \left( {\dfrac{{18{a_1}^2}}{{{a_0}^2}}} \right) - \left( {\dfrac{{18{a_2}}}{{{a_0}}}} \right)\]
Now we will take \[\dfrac{{18}}{{{a_0}^2}}\] common from both the terms. Therefore, we get
\[ \Rightarrow {\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2} = \dfrac{{18}}{{{a_0}^2}}\left( {{a_1}^2 - {a_0}{a_2}} \right) = \dfrac{{18\left( {{a_1}^2 - {a_0}{a_2}} \right)}}{{{a_0}^2}}\]
Hence, the value of \[{\left( {\alpha - \beta } \right)^2} + {\left( {\beta - \gamma } \right)^2} + {\left( {\gamma - \alpha } \right)^2}\] is equals to \[\dfrac{{18\left( {{a_1}^2 - {a_0}{a_2}} \right)}}{{{a_0}^2}}\].
So, option D is the correct option.
Note:
Here we should note that the cubic equations are the equation in which the highest exponent of the variable is 3. In an equation the number of its roots is equal to the value of the highest exponent of the variable of that equation. That means for a cubic equation there are three roots of the equation. Apart from the cubic equations, equations are also categorized as quadratic equations, linear equations and so on. A quadratic equation is an equation in which the highest exponent of the variable is 2 whereas a linear equation has the highest degree of 1. So there are only two roots of the quadratic equation and one in the linear equation.
Representation of equations is done in the following manner:
Linear equation: \[ax+b=0\]
Quadratic equation: \[a{x^2} + bx + c = 0\]
Cubic equation: \[a{x^3} + b{x^2} + cx + d = 0\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

