
Let $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ . If ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$ , for $n\ge 1$ , then the value of $\dfrac{{{a}_{10}}-2{{a}_{8}}}{2{{a}_{9}}}$ is equals to
( a ) 3
( b ) -3
( c ) 6
( d ) -6
Answer
577.8k+ views
Hint: To solve this question, what we will do is first we will write the given quadratic equation ${{x}^{2}}-6x-2=0$ in terms of $\alpha $ and $\beta $. Then, we will multiply both the equations with factor ${{\alpha }^{8}}$ and ${{\beta }^{8}}$ respectively. Then we will arrange the equations together in such a way that we get factors of the same power separately and hence, we will try to get the condition asked in question.
Complete step-by-step answer:
As in question it is clearly given that, $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ .
then, we can put x = $\alpha $ and x = $\beta $,
so, putting x = $\alpha $ in ${{x}^{2}}-6x-2=0$, we get
${{\alpha }^{2}}-6\alpha -2=0$…..( i )
so, putting x = $\beta $ in ${{x}^{2}}-6x-2=0$, we get
${{\beta }^{2}}-6\beta -2=0$…. ( ii )
Multiplying equation ( i ) by ${{\alpha }^{8}}$, we get
${{\alpha }^{8}}({{\alpha }^{2}}-6\alpha -2)=0({{\alpha }^{8}})$
$({{\alpha }^{10}}-6{{\alpha }^{9}}-2{{\alpha }^{8}})=0$
${{\alpha }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}$……( iii )
Multiplying equation ( i ) by ${{\beta }^{8}}$, we get
${{\beta }^{8}}({{\beta }^{2}}-6\beta -2)=0({{\beta }^{8}})$
$({{\beta }^{10}}-6{{\beta }^{9}}-2{{\beta }^{8}})=0$
${{\beta }^{10}}=6{{\beta }^{9}}+2{{\beta }^{8}}$…..( iv )
Subtracting ( iv ) from ( iii ), we get
${{\alpha }^{10}}-{{\beta }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}-(6{{\beta }^{9}}+2{{\beta }^{8}})$
On simplifying we get
${{\alpha }^{10}}-{{\beta }^{10}}=6({{\alpha }^{9}}-{{\beta }^{9}})+2({{\alpha }^{8}}-{{\beta }^{8}})$
As, in question it is given that ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$, so ${{a}_{9}}={{\alpha }^{9}}-{{\beta }^{9}}$and ${{a}_{10}}={{\alpha }^{10}}-{{\beta }^{10}}$ and ${{a}_{8}}={{\alpha }^{8}}-{{\beta }^{8}}$
${{a}_{10}}=6({{a}_{9}})+2({{a}_{8}})$
Moving, $2({{a}_{8}})$ from right hand side to left hand side, we get
${{a}_{10}}-{{a}_{8}}=6{{a}_{9}}$
Re – writing above equation, we get
${{a}_{10}}-{{a}_{8}}=3\cdot 2{{a}_{9}}$
Using cross-multiplication, we get
$\dfrac{{{a}_{10}}-{{a}_{8}}}{2{{a}_{9}}}=3$
So, the correct answer is “Option A”.
Note: Always remember if it is given that a and b are roots of quadratic equation, then we can replace x in quadratic equation with a and b. This question is a bit tricky so what you can do in this type of question is just try to re – arrange the quadratic equation according to the given equation in question to prove or any condition provided this will make the question a bit easier. Try to avoid silly mistakes as it may make the question incorrect.
Complete step-by-step answer:
As in question it is clearly given that, $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ .
then, we can put x = $\alpha $ and x = $\beta $,
so, putting x = $\alpha $ in ${{x}^{2}}-6x-2=0$, we get
${{\alpha }^{2}}-6\alpha -2=0$…..( i )
so, putting x = $\beta $ in ${{x}^{2}}-6x-2=0$, we get
${{\beta }^{2}}-6\beta -2=0$…. ( ii )
Multiplying equation ( i ) by ${{\alpha }^{8}}$, we get
${{\alpha }^{8}}({{\alpha }^{2}}-6\alpha -2)=0({{\alpha }^{8}})$
$({{\alpha }^{10}}-6{{\alpha }^{9}}-2{{\alpha }^{8}})=0$
${{\alpha }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}$……( iii )
Multiplying equation ( i ) by ${{\beta }^{8}}$, we get
${{\beta }^{8}}({{\beta }^{2}}-6\beta -2)=0({{\beta }^{8}})$
$({{\beta }^{10}}-6{{\beta }^{9}}-2{{\beta }^{8}})=0$
${{\beta }^{10}}=6{{\beta }^{9}}+2{{\beta }^{8}}$…..( iv )
Subtracting ( iv ) from ( iii ), we get
${{\alpha }^{10}}-{{\beta }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}-(6{{\beta }^{9}}+2{{\beta }^{8}})$
On simplifying we get
${{\alpha }^{10}}-{{\beta }^{10}}=6({{\alpha }^{9}}-{{\beta }^{9}})+2({{\alpha }^{8}}-{{\beta }^{8}})$
As, in question it is given that ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$, so ${{a}_{9}}={{\alpha }^{9}}-{{\beta }^{9}}$and ${{a}_{10}}={{\alpha }^{10}}-{{\beta }^{10}}$ and ${{a}_{8}}={{\alpha }^{8}}-{{\beta }^{8}}$
${{a}_{10}}=6({{a}_{9}})+2({{a}_{8}})$
Moving, $2({{a}_{8}})$ from right hand side to left hand side, we get
${{a}_{10}}-{{a}_{8}}=6{{a}_{9}}$
Re – writing above equation, we get
${{a}_{10}}-{{a}_{8}}=3\cdot 2{{a}_{9}}$
Using cross-multiplication, we get
$\dfrac{{{a}_{10}}-{{a}_{8}}}{2{{a}_{9}}}=3$
So, the correct answer is “Option A”.
Note: Always remember if it is given that a and b are roots of quadratic equation, then we can replace x in quadratic equation with a and b. This question is a bit tricky so what you can do in this type of question is just try to re – arrange the quadratic equation according to the given equation in question to prove or any condition provided this will make the question a bit easier. Try to avoid silly mistakes as it may make the question incorrect.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

