
Let $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ . If ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$ , for $n\ge 1$ , then the value of $\dfrac{{{a}_{10}}-2{{a}_{8}}}{2{{a}_{9}}}$ is equals to
( a ) 3
( b ) -3
( c ) 6
( d ) -6
Answer
592.2k+ views
Hint: To solve this question, what we will do is first we will write the given quadratic equation ${{x}^{2}}-6x-2=0$ in terms of $\alpha $ and $\beta $. Then, we will multiply both the equations with factor ${{\alpha }^{8}}$ and ${{\beta }^{8}}$ respectively. Then we will arrange the equations together in such a way that we get factors of the same power separately and hence, we will try to get the condition asked in question.
Complete step-by-step answer:
As in question it is clearly given that, $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ .
then, we can put x = $\alpha $ and x = $\beta $,
so, putting x = $\alpha $ in ${{x}^{2}}-6x-2=0$, we get
${{\alpha }^{2}}-6\alpha -2=0$…..( i )
so, putting x = $\beta $ in ${{x}^{2}}-6x-2=0$, we get
${{\beta }^{2}}-6\beta -2=0$…. ( ii )
Multiplying equation ( i ) by ${{\alpha }^{8}}$, we get
${{\alpha }^{8}}({{\alpha }^{2}}-6\alpha -2)=0({{\alpha }^{8}})$
$({{\alpha }^{10}}-6{{\alpha }^{9}}-2{{\alpha }^{8}})=0$
${{\alpha }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}$……( iii )
Multiplying equation ( i ) by ${{\beta }^{8}}$, we get
${{\beta }^{8}}({{\beta }^{2}}-6\beta -2)=0({{\beta }^{8}})$
$({{\beta }^{10}}-6{{\beta }^{9}}-2{{\beta }^{8}})=0$
${{\beta }^{10}}=6{{\beta }^{9}}+2{{\beta }^{8}}$…..( iv )
Subtracting ( iv ) from ( iii ), we get
${{\alpha }^{10}}-{{\beta }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}-(6{{\beta }^{9}}+2{{\beta }^{8}})$
On simplifying we get
${{\alpha }^{10}}-{{\beta }^{10}}=6({{\alpha }^{9}}-{{\beta }^{9}})+2({{\alpha }^{8}}-{{\beta }^{8}})$
As, in question it is given that ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$, so ${{a}_{9}}={{\alpha }^{9}}-{{\beta }^{9}}$and ${{a}_{10}}={{\alpha }^{10}}-{{\beta }^{10}}$ and ${{a}_{8}}={{\alpha }^{8}}-{{\beta }^{8}}$
${{a}_{10}}=6({{a}_{9}})+2({{a}_{8}})$
Moving, $2({{a}_{8}})$ from right hand side to left hand side, we get
${{a}_{10}}-{{a}_{8}}=6{{a}_{9}}$
Re – writing above equation, we get
${{a}_{10}}-{{a}_{8}}=3\cdot 2{{a}_{9}}$
Using cross-multiplication, we get
$\dfrac{{{a}_{10}}-{{a}_{8}}}{2{{a}_{9}}}=3$
So, the correct answer is “Option A”.
Note: Always remember if it is given that a and b are roots of quadratic equation, then we can replace x in quadratic equation with a and b. This question is a bit tricky so what you can do in this type of question is just try to re – arrange the quadratic equation according to the given equation in question to prove or any condition provided this will make the question a bit easier. Try to avoid silly mistakes as it may make the question incorrect.
Complete step-by-step answer:
As in question it is clearly given that, $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}-6x-2=0$ .
then, we can put x = $\alpha $ and x = $\beta $,
so, putting x = $\alpha $ in ${{x}^{2}}-6x-2=0$, we get
${{\alpha }^{2}}-6\alpha -2=0$…..( i )
so, putting x = $\beta $ in ${{x}^{2}}-6x-2=0$, we get
${{\beta }^{2}}-6\beta -2=0$…. ( ii )
Multiplying equation ( i ) by ${{\alpha }^{8}}$, we get
${{\alpha }^{8}}({{\alpha }^{2}}-6\alpha -2)=0({{\alpha }^{8}})$
$({{\alpha }^{10}}-6{{\alpha }^{9}}-2{{\alpha }^{8}})=0$
${{\alpha }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}$……( iii )
Multiplying equation ( i ) by ${{\beta }^{8}}$, we get
${{\beta }^{8}}({{\beta }^{2}}-6\beta -2)=0({{\beta }^{8}})$
$({{\beta }^{10}}-6{{\beta }^{9}}-2{{\beta }^{8}})=0$
${{\beta }^{10}}=6{{\beta }^{9}}+2{{\beta }^{8}}$…..( iv )
Subtracting ( iv ) from ( iii ), we get
${{\alpha }^{10}}-{{\beta }^{10}}=6{{\alpha }^{9}}+2{{\alpha }^{8}}-(6{{\beta }^{9}}+2{{\beta }^{8}})$
On simplifying we get
${{\alpha }^{10}}-{{\beta }^{10}}=6({{\alpha }^{9}}-{{\beta }^{9}})+2({{\alpha }^{8}}-{{\beta }^{8}})$
As, in question it is given that ${{a}_{n}}={{\alpha }^{n}}-{{\beta }^{n}}$, so ${{a}_{9}}={{\alpha }^{9}}-{{\beta }^{9}}$and ${{a}_{10}}={{\alpha }^{10}}-{{\beta }^{10}}$ and ${{a}_{8}}={{\alpha }^{8}}-{{\beta }^{8}}$
${{a}_{10}}=6({{a}_{9}})+2({{a}_{8}})$
Moving, $2({{a}_{8}})$ from right hand side to left hand side, we get
${{a}_{10}}-{{a}_{8}}=6{{a}_{9}}$
Re – writing above equation, we get
${{a}_{10}}-{{a}_{8}}=3\cdot 2{{a}_{9}}$
Using cross-multiplication, we get
$\dfrac{{{a}_{10}}-{{a}_{8}}}{2{{a}_{9}}}=3$
So, the correct answer is “Option A”.
Note: Always remember if it is given that a and b are roots of quadratic equation, then we can replace x in quadratic equation with a and b. This question is a bit tricky so what you can do in this type of question is just try to re – arrange the quadratic equation according to the given equation in question to prove or any condition provided this will make the question a bit easier. Try to avoid silly mistakes as it may make the question incorrect.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

