
Let $\alpha + i\beta :\alpha ,\beta {\text{ }} \in {\text{ }}\Re, $be a root of the equation ${x^3} + qx + r = 0;q,r \in \Re$. Find a real cubic equation, independent of $\alpha $ and $\beta $, whose one root is $2\alpha $.
$
A{\text{ }}{{\text{x}}^3} + rx - r = 0 \\
B{\text{ }}{{\text{x}}^3} + rx - q = 0 \\
C{\text{ }}{{\text{x}}^3} + qx - r = 0 \\
D{\text{ }}{{\text{x}}^3} + 2qx - r = 0 \\
$
Answer
599.7k+ views
Hint- Here we will proceed by assuming the third root be $\gamma $. Then we will find the sum of roots and product of roots to form the required equation.
Complete step-by-step answer:
As we are given that ${x^3} + qx + r = 0$
Given, $\alpha + i\beta $ is a root of the equation.
$ \Rightarrow \alpha - i\beta $ will be the other root.
Let the third root be $\gamma $.
As the coefficient of ${x^2}$is 0-
Now we will find the sum of roots will be-
$\alpha + i\beta + \alpha - i\beta + \gamma = 0$
$ \Rightarrow 2\alpha = - \gamma $ ………………. (1)
And Product of roots $\left( {{\alpha ^2} + {\beta ^2}} \right)\gamma = - r$
$ \Rightarrow \left( {{\alpha ^2} + {\beta ^2}} \right) = - \dfrac{r}{\gamma }$ ……….. (2)
Also the sum of any two roots taken at a time-
${\alpha ^2} + {\beta ^2} + \left( {\alpha + i\beta } \right)\gamma + \left( {\alpha - i\beta } \right)\gamma = q$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + 2\alpha \gamma = q$
Now put the value of equation 1 and equation 2,
We get-
$ - \dfrac{r}{\gamma } - {\gamma ^2} = q$
$ \Rightarrow - {\gamma ^3} - q\gamma - r = 0$
Or ${\left( {2\alpha } \right)^3} + q\left( {2\alpha } \right) = r$
So the equation with $2\alpha $as a root is-
$
{x^3} + qx = r \\
i.e.{\text{ }}{{\text{x}}^3} + qx - r = 0 \\
$
Hence option C is correct.
Note- In order to solve this type of question, we must understand that we have to calculate the sum of roots and product of roots so that when we take both sum and product of roots together, we will get the required equation.
Complete step-by-step answer:
As we are given that ${x^3} + qx + r = 0$
Given, $\alpha + i\beta $ is a root of the equation.
$ \Rightarrow \alpha - i\beta $ will be the other root.
Let the third root be $\gamma $.
As the coefficient of ${x^2}$is 0-
Now we will find the sum of roots will be-
$\alpha + i\beta + \alpha - i\beta + \gamma = 0$
$ \Rightarrow 2\alpha = - \gamma $ ………………. (1)
And Product of roots $\left( {{\alpha ^2} + {\beta ^2}} \right)\gamma = - r$
$ \Rightarrow \left( {{\alpha ^2} + {\beta ^2}} \right) = - \dfrac{r}{\gamma }$ ……….. (2)
Also the sum of any two roots taken at a time-
${\alpha ^2} + {\beta ^2} + \left( {\alpha + i\beta } \right)\gamma + \left( {\alpha - i\beta } \right)\gamma = q$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + 2\alpha \gamma = q$
Now put the value of equation 1 and equation 2,
We get-
$ - \dfrac{r}{\gamma } - {\gamma ^2} = q$
$ \Rightarrow - {\gamma ^3} - q\gamma - r = 0$
Or ${\left( {2\alpha } \right)^3} + q\left( {2\alpha } \right) = r$
So the equation with $2\alpha $as a root is-
$
{x^3} + qx = r \\
i.e.{\text{ }}{{\text{x}}^3} + qx - r = 0 \\
$
Hence option C is correct.
Note- In order to solve this type of question, we must understand that we have to calculate the sum of roots and product of roots so that when we take both sum and product of roots together, we will get the required equation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

