
Let \[A=\left\{ \theta :\tan \theta +\sec \theta =\sqrt{2}\sec \theta \right\}\] and \[B=\left\{ \theta :\sec \theta -\tan \theta =\sqrt{2}\tan \theta \right\}\] be 2 sets. Then
A. $A=B$
B. $A\subset B$
C. $A\ne B$
D. $B\subset A$
Answer
508.5k+ views
Hint: We first simplify the given sets. We change the trigonometric ratios in one form. We use the rationalization process to get the same surds form. As the conditions for both sets are equal, we can treat them as the equal sets.
Complete step by step answer:
We need to simplify the equations \[\tan \theta +\sec \theta =\sqrt{2}\sec \theta \] and \[\sec \theta -\tan \theta =\sqrt{2}\tan \theta \].
We take \[\tan \theta +\sec \theta =\sqrt{2}\sec \theta \] and sec ratio in one side.
\[\begin{align}
& \tan \theta +\sec \theta =\sqrt{2}\sec \theta \\
& \Rightarrow \tan \theta =\left( \sqrt{2}-1 \right)\sec \theta \\
& \Rightarrow \dfrac{\tan \theta }{\sec \theta }=\sin \theta =\left( \sqrt{2}-1 \right) \\
\end{align}\]
Now we take \[\sec \theta -\tan \theta =\sqrt{2}\tan \theta \] and tan ratio in one side.
\[\begin{align}
& \sec \theta -\tan \theta =\sqrt{2}\tan \theta \\
& \Rightarrow \sec \theta =\left( \sqrt{2}+1 \right)\tan \theta \\
& \Rightarrow \dfrac{\tan \theta }{\sec \theta }=\sin \theta =\dfrac{1}{\left( \sqrt{2}+1 \right)} \\
\end{align}\]
We now need to rationalize the given form of \[\dfrac{1}{\left( \sqrt{2}+1 \right)}\]. The given surds expression is \[\dfrac{1}{\left( \sqrt{2}+1 \right)}\].
We have to apply the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We multiply \[\left( \sqrt{2}-1 \right)\] to both denominator and the numerator. This is the conjugate form of \[\left( \sqrt{2}+1 \right)\].
Now the dfraction becomes \[\dfrac{1}{\left( \sqrt{2}+1 \right)}=\dfrac{\left( \sqrt{2}-1 \right)}{\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)}\].
We assume the values $a=\sqrt{2};b=1$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Therefore, $\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}$.
Simplifying we get $\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}=2-1=1$.
The dfraction becomes \[\dfrac{1}{\left( \sqrt{2}+1 \right)}=\left( \sqrt{2}-1 \right)\].
The given sets \[A=\left\{ \theta :\tan \theta +\sec \theta =\sqrt{2}\sec \theta \right\}\] and \[B=\left\{ \theta :\sec \theta -\tan \theta =\sqrt{2}\tan \theta \right\}\] can also be expressed as \[A=\left\{ \theta :\sin \theta =\left( \sqrt{2}-1 \right) \right\}\] and \[B=\left\{ \theta :\sin \theta =\dfrac{1}{\left( \sqrt{2}+1 \right)}=\left( \sqrt{2}-1 \right) \right\}\] respectively.
Both of them are equal. Therefore, $A=B$. The correct option is option (A).
Note:
Instead of multiplying \[\left( \sqrt{2}-1 \right)\], we can also form 1 in numerator as $1=2-1$. We try to form the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ where we take \[1=2-1={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}\].
Now we break it to get ${{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}=\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right)$.
Then we can eliminate the part of \[\left( \sqrt{2}-1 \right)\] to simplify.
Complete step by step answer:
We need to simplify the equations \[\tan \theta +\sec \theta =\sqrt{2}\sec \theta \] and \[\sec \theta -\tan \theta =\sqrt{2}\tan \theta \].
We take \[\tan \theta +\sec \theta =\sqrt{2}\sec \theta \] and sec ratio in one side.
\[\begin{align}
& \tan \theta +\sec \theta =\sqrt{2}\sec \theta \\
& \Rightarrow \tan \theta =\left( \sqrt{2}-1 \right)\sec \theta \\
& \Rightarrow \dfrac{\tan \theta }{\sec \theta }=\sin \theta =\left( \sqrt{2}-1 \right) \\
\end{align}\]
Now we take \[\sec \theta -\tan \theta =\sqrt{2}\tan \theta \] and tan ratio in one side.
\[\begin{align}
& \sec \theta -\tan \theta =\sqrt{2}\tan \theta \\
& \Rightarrow \sec \theta =\left( \sqrt{2}+1 \right)\tan \theta \\
& \Rightarrow \dfrac{\tan \theta }{\sec \theta }=\sin \theta =\dfrac{1}{\left( \sqrt{2}+1 \right)} \\
\end{align}\]
We now need to rationalize the given form of \[\dfrac{1}{\left( \sqrt{2}+1 \right)}\]. The given surds expression is \[\dfrac{1}{\left( \sqrt{2}+1 \right)}\].
We have to apply the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We multiply \[\left( \sqrt{2}-1 \right)\] to both denominator and the numerator. This is the conjugate form of \[\left( \sqrt{2}+1 \right)\].
Now the dfraction becomes \[\dfrac{1}{\left( \sqrt{2}+1 \right)}=\dfrac{\left( \sqrt{2}-1 \right)}{\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)}\].
We assume the values $a=\sqrt{2};b=1$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Therefore, $\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}$.
Simplifying we get $\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}=2-1=1$.
The dfraction becomes \[\dfrac{1}{\left( \sqrt{2}+1 \right)}=\left( \sqrt{2}-1 \right)\].
The given sets \[A=\left\{ \theta :\tan \theta +\sec \theta =\sqrt{2}\sec \theta \right\}\] and \[B=\left\{ \theta :\sec \theta -\tan \theta =\sqrt{2}\tan \theta \right\}\] can also be expressed as \[A=\left\{ \theta :\sin \theta =\left( \sqrt{2}-1 \right) \right\}\] and \[B=\left\{ \theta :\sin \theta =\dfrac{1}{\left( \sqrt{2}+1 \right)}=\left( \sqrt{2}-1 \right) \right\}\] respectively.
Both of them are equal. Therefore, $A=B$. The correct option is option (A).
Note:
Instead of multiplying \[\left( \sqrt{2}-1 \right)\], we can also form 1 in numerator as $1=2-1$. We try to form the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ where we take \[1=2-1={{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}\].
Now we break it to get ${{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}=\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right)$.
Then we can eliminate the part of \[\left( \sqrt{2}-1 \right)\] to simplify.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

