
Let \[A=\left\{ \theta \in \left( \dfrac{-\pi }{2},\pi \right):\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\text{ is purely imaginary} \right\}\]. Then the sum of elements of A is
\[\begin{align}
& A)\dfrac{5\pi }{6} \\
& B)\dfrac{2\pi }{3} \\
& C)\dfrac{3\pi }{4} \\
& D)\pi \\
\end{align}\]
Answer
577.2k+ views
Hint: We know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero. So, we can say that the value of a in \[a+ib\] is equal to zero. By using this concept, we can find the value of \[\sin \theta \] where the given complex number is imaginary. Now we should find the values of \[\theta \] in the range where \[\theta \in \left( \dfrac{-\pi }{2},\pi \right)\]. Now we should find the sum of values of \[\theta \].
Complete step by step answer:
From the question, it is clear that the value of \[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\] is purely imaginary. Before solving the question, we should know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero.
Let us assume the complex number \[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\] is equal to \[a+ib\].
\[\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=a+ib.......(1)\]
Now let us multiply and divide with \[1+2i\sin \theta \] on L.H.S of equation (1).
\[\begin{align}
& \Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }\times \dfrac{1+2i\sin \theta }{1+2i\sin \theta }=a+ib \\
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{\left( 1-2i\sin \theta \right)\left( 1+2i\sin \theta \right)}=a+ib \\
\end{align}\]
We know that \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
\[\Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1-4{{i}^{2}}{{\sin }^{2}}\theta }=a+ib\]
We know that the value of \[{{i}^{2}}\] is equal to -1.
\[\begin{align}
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1 \right)+\left( 3+2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{3+2i\sin \theta +\left( 3 \right)\left( 2i\sin \theta \right)+\left( 2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
\end{align}\]
\[\Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta +4{{i}^{2}}{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib\]
We know that the value of \[{{i}^{2}}\] is equal to -1.
\[\begin{align}
& \Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta -4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta +8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib \\
\end{align}\]
\[\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+\dfrac{8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib\]
\[\begin{align}
& \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a.....(2) \\
& \Rightarrow \dfrac{8\sin \theta }{1+4{{\sin }^{2}}\theta }=b.....(3) \\
\end{align}\]
We know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero. So, we can say that the value of a in \[a+ib\] is equal to zero.
Then from equation (2), we can write that
\[\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=0\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow 3-4{{\sin }^{2}}\theta =0 \\
& \Rightarrow 4{{\sin }^{2}}\theta =3 \\
\end{align}\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{3}{4} \\
& \Rightarrow \sin \theta =\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
From the question, we were given that \[\theta \in \left( \dfrac{-\pi }{2},\pi \right)\].
We know that the values of \[\theta \] if \[\theta \in \left( \dfrac{-\pi }{2},\pi \right)\] for \[\sin \theta =\pm \dfrac{\sqrt{3}}{2}\] are equal to \[\dfrac{-\pi }{3},\dfrac{\pi }{3},\dfrac{2\pi }{3}\].
Now we should find the sum of values of all possible values of \[\theta \].
Let us assume the sum of values of \[\theta \] is equal to \[\sum{\theta }\].
\[\begin{align}
& \Rightarrow \sum{\theta }=\dfrac{-\pi }{3}+\dfrac{\pi }{3}+\dfrac{2\pi }{3} \\
& \Rightarrow \sum{\theta }=\dfrac{2\pi }{3}....(4) \\
\end{align}\]
From equation (4), it is clear that the sum of all possible values of \[\theta \] are equal to \[\dfrac{2\pi }{3}\].
So, the correct answer is “Option B”.
Note: Some students may have a misconception that a complex number is said to be purely imaginary if the imaginary part of the complex number is equal to zero. Then, we will say that the value of b in \[a+ib\] is equal to zero. If this misconception is followed, then we cannot get the correct answer. The final answer will definitely get interrupted. So, students should have a clear view of the concept.
Complete step by step answer:
From the question, it is clear that the value of \[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\] is purely imaginary. Before solving the question, we should know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero.
Let us assume the complex number \[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\] is equal to \[a+ib\].
\[\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=a+ib.......(1)\]
Now let us multiply and divide with \[1+2i\sin \theta \] on L.H.S of equation (1).
\[\begin{align}
& \Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }\times \dfrac{1+2i\sin \theta }{1+2i\sin \theta }=a+ib \\
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{\left( 1-2i\sin \theta \right)\left( 1+2i\sin \theta \right)}=a+ib \\
\end{align}\]
We know that \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
\[\Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1-4{{i}^{2}}{{\sin }^{2}}\theta }=a+ib\]
We know that the value of \[{{i}^{2}}\] is equal to -1.
\[\begin{align}
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1 \right)+\left( 3+2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{3+2i\sin \theta +\left( 3 \right)\left( 2i\sin \theta \right)+\left( 2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\
\end{align}\]
\[\Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta +4{{i}^{2}}{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib\]
We know that the value of \[{{i}^{2}}\] is equal to -1.
\[\begin{align}
& \Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta -4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib \\
& \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta +8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib \\
\end{align}\]
\[\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+\dfrac{8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib\]
\[\begin{align}
& \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a.....(2) \\
& \Rightarrow \dfrac{8\sin \theta }{1+4{{\sin }^{2}}\theta }=b.....(3) \\
\end{align}\]
We know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero. So, we can say that the value of a in \[a+ib\] is equal to zero.
Then from equation (2), we can write that
\[\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=0\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow 3-4{{\sin }^{2}}\theta =0 \\
& \Rightarrow 4{{\sin }^{2}}\theta =3 \\
\end{align}\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{3}{4} \\
& \Rightarrow \sin \theta =\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
From the question, we were given that \[\theta \in \left( \dfrac{-\pi }{2},\pi \right)\].
We know that the values of \[\theta \] if \[\theta \in \left( \dfrac{-\pi }{2},\pi \right)\] for \[\sin \theta =\pm \dfrac{\sqrt{3}}{2}\] are equal to \[\dfrac{-\pi }{3},\dfrac{\pi }{3},\dfrac{2\pi }{3}\].
Now we should find the sum of values of all possible values of \[\theta \].
Let us assume the sum of values of \[\theta \] is equal to \[\sum{\theta }\].
\[\begin{align}
& \Rightarrow \sum{\theta }=\dfrac{-\pi }{3}+\dfrac{\pi }{3}+\dfrac{2\pi }{3} \\
& \Rightarrow \sum{\theta }=\dfrac{2\pi }{3}....(4) \\
\end{align}\]
From equation (4), it is clear that the sum of all possible values of \[\theta \] are equal to \[\dfrac{2\pi }{3}\].
So, the correct answer is “Option B”.
Note: Some students may have a misconception that a complex number is said to be purely imaginary if the imaginary part of the complex number is equal to zero. Then, we will say that the value of b in \[a+ib\] is equal to zero. If this misconception is followed, then we cannot get the correct answer. The final answer will definitely get interrupted. So, students should have a clear view of the concept.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

