
Let A=\[\left( {\begin{array}{*{20}{c}}
1&0&0 \\
2&1&0 \\
3&2&1
\end{array}} \right)\]and U1,U2,U3 be column matrices satisfying
\[A{U_1} = \left( {\begin{array}{*{20}{c}}
1 \\
0 \\
0
\end{array}} \right)\,,\,A{U_2} = \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
0
\end{array}} \right),\,A{U_3} = \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
1
\end{array}} \right)\]. If U is 3*3 matrix whose column are U1,U2,U3 then |U|?
Answer
526.8k+ views
Hint: Here the given question is of matrix, in which the relation between matrices are given and in order to solve it we are going to use multiplication and addition property of matrices, and the data given in the question which describes the relation of all theses matrices.
Complete step-by-step answer:
The given question is of solving matrices, here first we have to find the matrix “U” in order to find the determinent of the matrix, on solving we get:
Here the relation is given for U1,U2,U3 in product with the matrix A, so we will here add all theses matrices and then take common the matrix A, in order to solve further, on solving we get:
\[
\Rightarrow A{U_1} + A{U_2} + A{U_3} = \left( {\begin{array}{*{20}{c}}
1 \\
0 \\
0
\end{array}} \right)\, + \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
0
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
1
\end{array}} \right) \\
\Rightarrow A({U_1} + {U_2} + {U_3}) = \left( {\begin{array}{*{20}{c}}
{1 + 2 + 2} \\
{0 + 3 + 3} \\
{0 + 0 + 1}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
6 \\
1
\end{array}} \right) \\
\]
Now here we obtain a relation between matrices, and now to solve further for the matrix “U” which is summation of the three matrices U1,U2,U3, here to solve further we have to multiply the identity matrix on the right side of equation, we know the property of identity matrix that multiplying it by any matrix does not affect the values of matrix.
On solving we get:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
2&1&0 \\
3&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{5 \times 1 + 5 \times 0 + 5 \times 0}&{5 \times 0 + 5 \times 1 + 5 \times 0}&{5 \times 0 + 5 \times 0 + 5 \times 1} \\
{6 \times 1 + 6 \times 0 + 6 \times 0}&{6 \times 0 + 6 \times 1 + 6 \times 0}&{6 \times 0 + 6 \times 0 + 6 \times 1} \\
{1 \times 1 + 1 \times 0 + 1 \times 0}&{1 \times 0 + 1 \times 1 + 1 \times 0}&{1 \times 0 + 1 \times 0 + 1 \times 1}
\end{array}} \right)\]
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
2&1&0 \\
3&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
6&6&6 \\
1&1&1
\end{array}} \right)\]
Now using row and column arrangements we have to solve further:
\[
\Rightarrow {C_1} \to {C_1} - 2{C_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{1 - 2(0)}&0&0 \\
{2 - 2(1)}&1&0 \\
{3 - 2(2)}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{5 - 2(5)}&5&5 \\
{6 - 2(6)}&6&6 \\
{1 - 2(1)}&1&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&5&5 \\
{ - 6}&6&6 \\
{ - 1}&1&1
\end{array}} \right) \\
\Rightarrow {C_2} \to {C_2} - 2{C_3} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&{0 - 2(0)}&0 \\
0&{1 - 2(0)}&0 \\
{ - 1}&{2 - 2(1)}&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{5 - 2(5)}&5 \\
{ - 6}&{6 - 2(6)}&6 \\
{ - 1}&{1 - 2(1)}&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&0&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1}&{ - 1}&1
\end{array}} \right) \\
\Rightarrow {R_3} \to {R_3} + {R_1} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1 + 1}&{0 + 0}&{1 + 0}
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1 + ( - 5)}&{ - 1 + ( - 5)}&{1 + 5}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right) \\
\Rightarrow U = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right)(\sin ce\,\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = Identity\,matrix) \\
\]
Here we get the value of the matrix “U”, now determinant of matrix,
\[ \Rightarrow |U| = \left| {\left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right)} \right| = 0\]
Here the value of determinant is zero because when two rows or columns of a determinant are the same then the value of determinant is zero.
Note: Here the given question needs to find the value of the determinant given in the question, and to find that we have done a series of solutions needed to solve, as per instruction in the question. In solving a matrix you need to know the properties associated.
Complete step-by-step answer:
The given question is of solving matrices, here first we have to find the matrix “U” in order to find the determinent of the matrix, on solving we get:
Here the relation is given for U1,U2,U3 in product with the matrix A, so we will here add all theses matrices and then take common the matrix A, in order to solve further, on solving we get:
\[
\Rightarrow A{U_1} + A{U_2} + A{U_3} = \left( {\begin{array}{*{20}{c}}
1 \\
0 \\
0
\end{array}} \right)\, + \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
0
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2 \\
3 \\
1
\end{array}} \right) \\
\Rightarrow A({U_1} + {U_2} + {U_3}) = \left( {\begin{array}{*{20}{c}}
{1 + 2 + 2} \\
{0 + 3 + 3} \\
{0 + 0 + 1}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
6 \\
1
\end{array}} \right) \\
\]
Now here we obtain a relation between matrices, and now to solve further for the matrix “U” which is summation of the three matrices U1,U2,U3, here to solve further we have to multiply the identity matrix on the right side of equation, we know the property of identity matrix that multiplying it by any matrix does not affect the values of matrix.
On solving we get:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
2&1&0 \\
3&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{5 \times 1 + 5 \times 0 + 5 \times 0}&{5 \times 0 + 5 \times 1 + 5 \times 0}&{5 \times 0 + 5 \times 0 + 5 \times 1} \\
{6 \times 1 + 6 \times 0 + 6 \times 0}&{6 \times 0 + 6 \times 1 + 6 \times 0}&{6 \times 0 + 6 \times 0 + 6 \times 1} \\
{1 \times 1 + 1 \times 0 + 1 \times 0}&{1 \times 0 + 1 \times 1 + 1 \times 0}&{1 \times 0 + 1 \times 0 + 1 \times 1}
\end{array}} \right)\]
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
2&1&0 \\
3&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
5&5&5 \\
6&6&6 \\
1&1&1
\end{array}} \right)\]
Now using row and column arrangements we have to solve further:
\[
\Rightarrow {C_1} \to {C_1} - 2{C_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{1 - 2(0)}&0&0 \\
{2 - 2(1)}&1&0 \\
{3 - 2(2)}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{5 - 2(5)}&5&5 \\
{6 - 2(6)}&6&6 \\
{1 - 2(1)}&1&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&5&5 \\
{ - 6}&6&6 \\
{ - 1}&1&1
\end{array}} \right) \\
\Rightarrow {C_2} \to {C_2} - 2{C_3} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&{0 - 2(0)}&0 \\
0&{1 - 2(0)}&0 \\
{ - 1}&{2 - 2(1)}&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{5 - 2(5)}&5 \\
{ - 6}&{6 - 2(6)}&6 \\
{ - 1}&{1 - 2(1)}&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&0&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1}&{ - 1}&1
\end{array}} \right) \\
\Rightarrow {R_3} \to {R_3} + {R_1} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1 + 1}&{0 + 0}&{1 + 0}
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1 + ( - 5)}&{ - 1 + ( - 5)}&{1 + 5}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)(U) = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right) \\
\Rightarrow U = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right)(\sin ce\,\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = Identity\,matrix) \\
\]
Here we get the value of the matrix “U”, now determinant of matrix,
\[ \Rightarrow |U| = \left| {\left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right)} \right| = 0\]
Here the value of determinant is zero because when two rows or columns of a determinant are the same then the value of determinant is zero.
Note: Here the given question needs to find the value of the determinant given in the question, and to find that we have done a series of solutions needed to solve, as per instruction in the question. In solving a matrix you need to know the properties associated.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

