
Let \[a,b,c,d\] be real numbers in G.P. If $u,v,w$ satisfy the system of equations$u+2v+3w=6$, $4u+5v+6w=12$, $6u+9v=4$. Then the roots of the equation $\left( \dfrac{1}{u}+\dfrac{1}{v}+\dfrac{1}{w} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+u+v+w=0$ and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$ are
(a) Equal
(b) Imaginary
(c) Reciprocals
(d) None of these
Answer
585.9k+ views
Hint:First, solve the given system of equations $u,v,w$ to obtain the values of the variables$u,v,w$ . Substitute these values in the given quadratic equation, whose roots are to be compared. If a, b, c, d are in G.P, then ${{b}^{2}}=ac$and ${{c}^{2}}=bd$ , $\dfrac{b}{a}=\dfrac{d}{c}$ . A real number can be called a root of a quadratic equation, if it satisfies the equation when substituted.
Complete step by step answer:
We are given a system of three equations which consist of three different variables $u,v$ and$w$.
$u+2v+3w=6........................(1)$
$4u+5v+6w=12.....................(2)$
$6u+9v=4...........................(3)$
We are also given two equations,
$\left( \dfrac{1}{u}+\dfrac{1}{v}+\dfrac{1}{w} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+u+v+w=0................(4)$
$20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0.....................(5)$
We first have to solve for $u,v$and$w$.
Subtracting equation (1) from equation (2), we get,
$u+v+w=2....................(6)$
Further, we multiply equation (6) by 3 and then subtract equation (1) from it.
\[\begin{align}
& \,\,\,\,3u+3v+3w=6 \\
& -(\underline{1u+2v+3w=6}) \\
& \,\,\,\,\underline{\underline{2u+1v+0w=0}} \\
\end{align}\]
We get,
$2u+v=0$
Or $u=\dfrac{-v}{2}$
Substituting $u=\dfrac{-v}{2}$ in equation (3), we get,
$6\left( \dfrac{-v}{2} \right)+9v=4$
$-3v+9v=4$
$6v=4$
$\therefore v=\dfrac{4}{6}=\dfrac{2}{3}$
$\therefore ~~u=\dfrac{-v}{2}=\dfrac{\left( -\dfrac{2}{3} \right)}{2}=\dfrac{-2}{6}=\dfrac{-1}{3}$
Substituting values for $u$ and $v$ in$u+v+w=2$, we get,
$w=2-u-v$
$=2-\left( \dfrac{-1}{3} \right)-\left( \dfrac{2}{3} \right)$
$=\dfrac{6}{3}+\dfrac{1}{3}-\dfrac{2}{3}$
$=\dfrac{5}{3}$
$\therefore w=\dfrac{5}{3}$
Hence, the values of $u,v$and$w$are $\dfrac{-1}{3}$, $\dfrac{2}{3}$ and $\dfrac{5}{3}$ respectively.
Substituting the values of $u,v$ and$w$ in equation (4), we get,
$\left( \dfrac{-3}{1}+\dfrac{3}{2}+\dfrac{3}{5} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+\left( \dfrac{-1}{3}+\dfrac{2}{3}+\dfrac{5}{3} \right)=0$
$\left( \dfrac{-30}{10}+\dfrac{15}{10}+\dfrac{6}{10} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+\left( \dfrac{6}{3} \right)=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+2=0$
Expanding ${{(b-c)}^{2}}$, ${{(c-a)}^{2}}$and ${{(d-b)}^{2}}$using the algebraic identity ${{(A-B)}^{2}}={{A}^{2}}-2AB+{{B}^{2}}$,
we get,
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{b}^{2}}-2bc+{{c}^{2}}+{{c}^{2}}-2ca+{{a}^{2}}+{{d}^{2}}-2db+{{b}^{2}} \right]x+2=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ 2{{b}^{2}}+2{{c}^{2}}+{{a}^{2}}+{{d}^{2}}-2bc-2ca-2db) \right]x+2=0...........(7)$
We are given that \[a,b,c,d\] be real numbers in G.P.
$\therefore {{b}^{2}}=ac$and ${{c}^{2}}=bd$
Also, $\dfrac{b}{a}=\dfrac{d}{c}$(= common ratio)\[^{2}\]
$\therefore bc=ad$
Substituting$ac={{b}^{2}}$, \[bd={{c}^{2}}\] and $bc=ad$ in equation (7), we get,
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ 2{{b}^{2}}+2{{c}^{2}}+{{a}^{2}}+{{d}^{2}}-2ad-2{{b}^{2}}-2{{c}^{2}}) \right]x+2=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{a}^{2}}-2ad+{{d}^{2}} \right]x+2=0$
Now using the algebraic identity \[{{A}^{2}}-2AB+{{B}^{2}}={{(A-B)}^{2}}\],
$\left( \dfrac{-9}{10} \right){{x}^{2}}+{{(a-d)}^{2}}x+2=0$
To make the denominators same multiplying throughout by -10, we get,
$9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0.....................(8)$
We have to find the relationship between roots of the equations $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Let $\alpha $, $\beta $ be the roots of the equation $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$.
Therefore,
$9{{\alpha }^{2}}-10{{(a-d)}^{2}}\alpha -20=0.....................(9)$
$9{{\beta }^{2}}-10{{(a-d)}^{2}}\beta -20=0.....................(10)$
Dividing equation (9) by ${{\alpha }^{2}}$, we get,
\[9-\dfrac{10{{(a-d)}^{2}}}{\alpha }-\dfrac{20}{{{\alpha }^{2}}}=0\]
\[9-10{{(a-d)}^{2}}\left( \dfrac{1}{\alpha } \right)-20\left( \dfrac{1}{{{\alpha }^{2}}} \right)=0\]
Multiplying by -1,we get,
\[20\left( \dfrac{1}{{{\alpha }^{2}}} \right)+10{{(a-d)}^{2}}\left( \dfrac{1}{\alpha } \right)-9=0\]
Comparing the above equation with $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$we can clearly see that $\dfrac{1}{\alpha }$ is a root of $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Similarly,
Dividing equation (10) by ${{\beta }^{2}}$, we get,
\[9-\dfrac{10{{(a-d)}^{2}}}{\beta }-\dfrac{20}{{{\beta }^{2}}}=0\]
\[9-10{{(a-d)}^{2}}\left( \dfrac{1}{\beta } \right)-20\left( \dfrac{1}{{{\beta }^{2}}} \right)=0\]
\[20\left( \dfrac{1}{{{\beta }^{2}}} \right)+10{{(a-d)}^{2}}\left( \dfrac{1}{\beta } \right)-9=0\]
Comparing the above equation with $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$we can clearly see that $\dfrac{1}{\beta }$ is also a root of $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Hence, from above statements, roots of the equations $\left( \dfrac{1}{u}+\dfrac{1}{v}+\dfrac{1}{w} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+u+v+w=0$ (which can be simplified as $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ ) and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$are reciprocals.
$\therefore $ The correct answer is an option (c).
Note:
$u,v$ and$w$ in equations (1), (2), and (3) can also be solved by using matrix algebra.
Solve $X={{A}^{-1}}B$, where, matrix of variables\[X=\left( \begin{matrix}
u \\
v \\
w \\
\end{matrix} \right)\], matrix of coefficients $A=\left( \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
6 & 9 & 0 \\
\end{matrix} \right)$,
matrix of constants $B=\left( \begin{matrix}
6 \\
12 \\
4 \\
\end{matrix} \right)$ .
Finding the roots of the quadratic equations $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$ separately and then comparing the roots is also an alternative, but tedious method.
Substituting the properties of real numbers a, b, c, d in G.P , such as ,${{b}^{2}}=ac$and ${{c}^{2}}=bd$,$bc=ad$ , has to be done as needed. Inappropriate substitutions might lead to more complexities.
Complete step by step answer:
We are given a system of three equations which consist of three different variables $u,v$ and$w$.
$u+2v+3w=6........................(1)$
$4u+5v+6w=12.....................(2)$
$6u+9v=4...........................(3)$
We are also given two equations,
$\left( \dfrac{1}{u}+\dfrac{1}{v}+\dfrac{1}{w} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+u+v+w=0................(4)$
$20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0.....................(5)$
We first have to solve for $u,v$and$w$.
Subtracting equation (1) from equation (2), we get,
$u+v+w=2....................(6)$
Further, we multiply equation (6) by 3 and then subtract equation (1) from it.
\[\begin{align}
& \,\,\,\,3u+3v+3w=6 \\
& -(\underline{1u+2v+3w=6}) \\
& \,\,\,\,\underline{\underline{2u+1v+0w=0}} \\
\end{align}\]
We get,
$2u+v=0$
Or $u=\dfrac{-v}{2}$
Substituting $u=\dfrac{-v}{2}$ in equation (3), we get,
$6\left( \dfrac{-v}{2} \right)+9v=4$
$-3v+9v=4$
$6v=4$
$\therefore v=\dfrac{4}{6}=\dfrac{2}{3}$
$\therefore ~~u=\dfrac{-v}{2}=\dfrac{\left( -\dfrac{2}{3} \right)}{2}=\dfrac{-2}{6}=\dfrac{-1}{3}$
Substituting values for $u$ and $v$ in$u+v+w=2$, we get,
$w=2-u-v$
$=2-\left( \dfrac{-1}{3} \right)-\left( \dfrac{2}{3} \right)$
$=\dfrac{6}{3}+\dfrac{1}{3}-\dfrac{2}{3}$
$=\dfrac{5}{3}$
$\therefore w=\dfrac{5}{3}$
Hence, the values of $u,v$and$w$are $\dfrac{-1}{3}$, $\dfrac{2}{3}$ and $\dfrac{5}{3}$ respectively.
Substituting the values of $u,v$ and$w$ in equation (4), we get,
$\left( \dfrac{-3}{1}+\dfrac{3}{2}+\dfrac{3}{5} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+\left( \dfrac{-1}{3}+\dfrac{2}{3}+\dfrac{5}{3} \right)=0$
$\left( \dfrac{-30}{10}+\dfrac{15}{10}+\dfrac{6}{10} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+\left( \dfrac{6}{3} \right)=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+2=0$
Expanding ${{(b-c)}^{2}}$, ${{(c-a)}^{2}}$and ${{(d-b)}^{2}}$using the algebraic identity ${{(A-B)}^{2}}={{A}^{2}}-2AB+{{B}^{2}}$,
we get,
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{b}^{2}}-2bc+{{c}^{2}}+{{c}^{2}}-2ca+{{a}^{2}}+{{d}^{2}}-2db+{{b}^{2}} \right]x+2=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ 2{{b}^{2}}+2{{c}^{2}}+{{a}^{2}}+{{d}^{2}}-2bc-2ca-2db) \right]x+2=0...........(7)$
We are given that \[a,b,c,d\] be real numbers in G.P.
$\therefore {{b}^{2}}=ac$and ${{c}^{2}}=bd$
Also, $\dfrac{b}{a}=\dfrac{d}{c}$(= common ratio)\[^{2}\]
$\therefore bc=ad$
Substituting$ac={{b}^{2}}$, \[bd={{c}^{2}}\] and $bc=ad$ in equation (7), we get,
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ 2{{b}^{2}}+2{{c}^{2}}+{{a}^{2}}+{{d}^{2}}-2ad-2{{b}^{2}}-2{{c}^{2}}) \right]x+2=0$
$\left( \dfrac{-9}{10} \right){{x}^{2}}+\left[ {{a}^{2}}-2ad+{{d}^{2}} \right]x+2=0$
Now using the algebraic identity \[{{A}^{2}}-2AB+{{B}^{2}}={{(A-B)}^{2}}\],
$\left( \dfrac{-9}{10} \right){{x}^{2}}+{{(a-d)}^{2}}x+2=0$
To make the denominators same multiplying throughout by -10, we get,
$9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0.....................(8)$
We have to find the relationship between roots of the equations $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Let $\alpha $, $\beta $ be the roots of the equation $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$.
Therefore,
$9{{\alpha }^{2}}-10{{(a-d)}^{2}}\alpha -20=0.....................(9)$
$9{{\beta }^{2}}-10{{(a-d)}^{2}}\beta -20=0.....................(10)$
Dividing equation (9) by ${{\alpha }^{2}}$, we get,
\[9-\dfrac{10{{(a-d)}^{2}}}{\alpha }-\dfrac{20}{{{\alpha }^{2}}}=0\]
\[9-10{{(a-d)}^{2}}\left( \dfrac{1}{\alpha } \right)-20\left( \dfrac{1}{{{\alpha }^{2}}} \right)=0\]
Multiplying by -1,we get,
\[20\left( \dfrac{1}{{{\alpha }^{2}}} \right)+10{{(a-d)}^{2}}\left( \dfrac{1}{\alpha } \right)-9=0\]
Comparing the above equation with $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$we can clearly see that $\dfrac{1}{\alpha }$ is a root of $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Similarly,
Dividing equation (10) by ${{\beta }^{2}}$, we get,
\[9-\dfrac{10{{(a-d)}^{2}}}{\beta }-\dfrac{20}{{{\beta }^{2}}}=0\]
\[9-10{{(a-d)}^{2}}\left( \dfrac{1}{\beta } \right)-20\left( \dfrac{1}{{{\beta }^{2}}} \right)=0\]
\[20\left( \dfrac{1}{{{\beta }^{2}}} \right)+10{{(a-d)}^{2}}\left( \dfrac{1}{\beta } \right)-9=0\]
Comparing the above equation with $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$we can clearly see that $\dfrac{1}{\beta }$ is also a root of $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$.
Hence, from above statements, roots of the equations $\left( \dfrac{1}{u}+\dfrac{1}{v}+\dfrac{1}{w} \right){{x}^{2}}+\left[ {{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(d-b)}^{2}} \right]x+u+v+w=0$ (which can be simplified as $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ ) and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$are reciprocals.
$\therefore $ The correct answer is an option (c).
Note:
$u,v$ and$w$ in equations (1), (2), and (3) can also be solved by using matrix algebra.
Solve $X={{A}^{-1}}B$, where, matrix of variables\[X=\left( \begin{matrix}
u \\
v \\
w \\
\end{matrix} \right)\], matrix of coefficients $A=\left( \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
6 & 9 & 0 \\
\end{matrix} \right)$,
matrix of constants $B=\left( \begin{matrix}
6 \\
12 \\
4 \\
\end{matrix} \right)$ .
Finding the roots of the quadratic equations $9{{x}^{2}}-10{{(a-d)}^{2}}x-20=0$ and $20{{x}^{2}}+10{{(a-d)}^{2}}x-9=0$ separately and then comparing the roots is also an alternative, but tedious method.
Substituting the properties of real numbers a, b, c, d in G.P , such as ,${{b}^{2}}=ac$and ${{c}^{2}}=bd$,$bc=ad$ , has to be done as needed. Inappropriate substitutions might lead to more complexities.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

