
Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when (i) A coincides with the origin and AB and AD are along OX and OY respectively. (ii) The centre of the square is at the origin and coordinate axes are parallel to the sides AB and AD respectively.
Answer
588.9k+ views
Hint: For solving this question, we should be aware about the basics of graph plotting. X-direction means going towards right while Y-direction means going upwards. Further, going left means going in the negative direction of X while going downwards means going in the negative direction of Y-axis. Apart from this we will use the basic terminology of Cartesian coordinates like the origin, x and y axis to solve the problem.
Complete step by step answer:
(i) To solve this part, we will refer to the figure below.
It is given that point A coincides with the origin, thus co-ordinate of A is (0,0). Further, it is also given that and AB and AD are along OX and OY respectively (OX is X-axis and OY is Y-axis), thus point B is given by (0+2a,0) = (2a,0) and point D is given by (0,0+2a) = (0,2a). This is because the edge length of the square in the problem is 2a and we have to move along the X-axis and Y-axis respectively. To find point C, we can see from the figure that we have to go vertically upwards from point B. Thus, y coordinate gets altered by 2a. Thus, we have coordinates of point C as (2a,0+2a) = (2a,2a)
(ii) To solve this part, we will refer to the figure below.
It is given that centre coincides with the origin, thus coordinate of centre is (0,0). Further, it is also given that AB and AD are along OX and OY respectively (OX is X-axis and OY is Y-axis), thus to get point B, we move towards the right from the centre by a unit and then downwards by a unit. Thus, B co-ordinate is (0+a,0-a) = (a, -a). Now, to get point C, we move towards the right from the centre by a unit and then upwards by a unit. Thus, C co-ordinate is (0+a,0+a) = (a, a). Now, to get point A, we move towards the left from the centre by a unit and then downwards by a unit. Thus, A coordinate is (0-a,0-a) = (-a, -a). Now, to get point D, we move towards the left from the centre by a unit and then upwards by a unit. Thus, D co-ordinate is (0-a,0+a) = (-a, a).
Note: Plotting on the graph is generally helpful in various questions like those involving geometry where plotting on a graph paper can greatly simplify the understanding of the geometry problem. In this case, we dealt with squares, however, we can represent almost any figure on the Cartesian plane (example includes triangle, rectangle, etc.) and then solve the problem.
Complete step by step answer:
(i) To solve this part, we will refer to the figure below.
It is given that point A coincides with the origin, thus co-ordinate of A is (0,0). Further, it is also given that and AB and AD are along OX and OY respectively (OX is X-axis and OY is Y-axis), thus point B is given by (0+2a,0) = (2a,0) and point D is given by (0,0+2a) = (0,2a). This is because the edge length of the square in the problem is 2a and we have to move along the X-axis and Y-axis respectively. To find point C, we can see from the figure that we have to go vertically upwards from point B. Thus, y coordinate gets altered by 2a. Thus, we have coordinates of point C as (2a,0+2a) = (2a,2a)
(ii) To solve this part, we will refer to the figure below.
It is given that centre coincides with the origin, thus coordinate of centre is (0,0). Further, it is also given that AB and AD are along OX and OY respectively (OX is X-axis and OY is Y-axis), thus to get point B, we move towards the right from the centre by a unit and then downwards by a unit. Thus, B co-ordinate is (0+a,0-a) = (a, -a). Now, to get point C, we move towards the right from the centre by a unit and then upwards by a unit. Thus, C co-ordinate is (0+a,0+a) = (a, a). Now, to get point A, we move towards the left from the centre by a unit and then downwards by a unit. Thus, A coordinate is (0-a,0-a) = (-a, -a). Now, to get point D, we move towards the left from the centre by a unit and then upwards by a unit. Thus, D co-ordinate is (0-a,0+a) = (-a, a).
Note: Plotting on the graph is generally helpful in various questions like those involving geometry where plotting on a graph paper can greatly simplify the understanding of the geometry problem. In this case, we dealt with squares, however, we can represent almost any figure on the Cartesian plane (example includes triangle, rectangle, etc.) and then solve the problem.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

