
Let $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and
$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $ is equal to
A.330
B.192
C.190
D.165
Answer
584.4k+ views
Hint: In this question there are two predefined functions. First$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$ and value of $a + b + c = 3$. So make sure that we start to put the values of $x$ from $1$ to $8$. We will get a series of functions that will help to evaluate the next function value.
Complete step-by-step answer:
Given: $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $
Since, in the question $f\left( x \right)$ is defined as $f\left( x \right) = a{x^2} + bx + c$ so to solve it follow the function definition so,
$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$
Now, $\sum\limits_{n = 1}^8 {f\left( n \right)} = f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + f\left( 4 \right) + f\left( 5 \right) + f\left( 6 \right) + f\left( 8 \right) + f\left( 8 \right)$
$\because f\left( 1 \right) = a{\left( 1 \right)^2} + b\left( 1 \right) + c = a + b + c = 3$
$f\left( 2 \right) = f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) + 1 \times 1 = 3 + 3 + 1 = 7$ (Using $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$)
$
f\left( 3 \right) = f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) + 2 \times 1 = 7 + 3 + 2 = 12 \\
f\left( 4 \right) = f\left( {3 + 1} \right) = f\left( 3 \right) + f\left( 1 \right) + 3 \times 1 = 12 + 3 + 3 = 18 \\
f\left( 5 \right) = f\left( {4 + 1} \right) = f\left( 4 \right) + f\left( 1 \right) + 4 \times 1 = 18 + 3 + 4 = 25 \\
f\left( 6 \right) = f\left( {5 + 1} \right) = f\left( 5 \right) + f\left( 1 \right) + 5 \times 1 = 25 + 3 + 5 = 33 \\
f\left( 7 \right) = f\left( {6 + 1} \right) = f\left( 6 \right) + f\left( 1 \right) + 6 \times 1 = 33 + 3 + 6 = 42 \\
f\left( 8 \right) = f\left( {7 + 1} \right) = f\left( 7 \right) + f\left( 1 \right) + 7 \times 1 = 42 + 3 + 7 = 52 \\
$
Since, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 3 + 7 + 12 + 18 + 25 + 33 + 42 + 52 = 192$
Hence, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 192$
Hence option (b) is the correct answer.
So, the correct answer is “Option B”.
Note: In the question a student has to follow all the predefined functions and only have to put values according to the progressing way, and at last all the values for the final answer.
Complete step-by-step answer:
Given: $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $
Since, in the question $f\left( x \right)$ is defined as $f\left( x \right) = a{x^2} + bx + c$ so to solve it follow the function definition so,
$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$
Now, $\sum\limits_{n = 1}^8 {f\left( n \right)} = f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + f\left( 4 \right) + f\left( 5 \right) + f\left( 6 \right) + f\left( 8 \right) + f\left( 8 \right)$
$\because f\left( 1 \right) = a{\left( 1 \right)^2} + b\left( 1 \right) + c = a + b + c = 3$
$f\left( 2 \right) = f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) + 1 \times 1 = 3 + 3 + 1 = 7$ (Using $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$)
$
f\left( 3 \right) = f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) + 2 \times 1 = 7 + 3 + 2 = 12 \\
f\left( 4 \right) = f\left( {3 + 1} \right) = f\left( 3 \right) + f\left( 1 \right) + 3 \times 1 = 12 + 3 + 3 = 18 \\
f\left( 5 \right) = f\left( {4 + 1} \right) = f\left( 4 \right) + f\left( 1 \right) + 4 \times 1 = 18 + 3 + 4 = 25 \\
f\left( 6 \right) = f\left( {5 + 1} \right) = f\left( 5 \right) + f\left( 1 \right) + 5 \times 1 = 25 + 3 + 5 = 33 \\
f\left( 7 \right) = f\left( {6 + 1} \right) = f\left( 6 \right) + f\left( 1 \right) + 6 \times 1 = 33 + 3 + 6 = 42 \\
f\left( 8 \right) = f\left( {7 + 1} \right) = f\left( 7 \right) + f\left( 1 \right) + 7 \times 1 = 42 + 3 + 7 = 52 \\
$
Since, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 3 + 7 + 12 + 18 + 25 + 33 + 42 + 52 = 192$
Hence, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 192$
Hence option (b) is the correct answer.
So, the correct answer is “Option B”.
Note: In the question a student has to follow all the predefined functions and only have to put values according to the progressing way, and at last all the values for the final answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

