
Let $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and
$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $ is equal to
A.330
B.192
C.190
D.165
Answer
567.9k+ views
Hint: In this question there are two predefined functions. First$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$ and value of $a + b + c = 3$. So make sure that we start to put the values of $x$ from $1$ to $8$. We will get a series of functions that will help to evaluate the next function value.
Complete step-by-step answer:
Given: $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $
Since, in the question $f\left( x \right)$ is defined as $f\left( x \right) = a{x^2} + bx + c$ so to solve it follow the function definition so,
$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$
Now, $\sum\limits_{n = 1}^8 {f\left( n \right)} = f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + f\left( 4 \right) + f\left( 5 \right) + f\left( 6 \right) + f\left( 8 \right) + f\left( 8 \right)$
$\because f\left( 1 \right) = a{\left( 1 \right)^2} + b\left( 1 \right) + c = a + b + c = 3$
$f\left( 2 \right) = f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) + 1 \times 1 = 3 + 3 + 1 = 7$ (Using $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$)
$
f\left( 3 \right) = f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) + 2 \times 1 = 7 + 3 + 2 = 12 \\
f\left( 4 \right) = f\left( {3 + 1} \right) = f\left( 3 \right) + f\left( 1 \right) + 3 \times 1 = 12 + 3 + 3 = 18 \\
f\left( 5 \right) = f\left( {4 + 1} \right) = f\left( 4 \right) + f\left( 1 \right) + 4 \times 1 = 18 + 3 + 4 = 25 \\
f\left( 6 \right) = f\left( {5 + 1} \right) = f\left( 5 \right) + f\left( 1 \right) + 5 \times 1 = 25 + 3 + 5 = 33 \\
f\left( 7 \right) = f\left( {6 + 1} \right) = f\left( 6 \right) + f\left( 1 \right) + 6 \times 1 = 33 + 3 + 6 = 42 \\
f\left( 8 \right) = f\left( {7 + 1} \right) = f\left( 7 \right) + f\left( 1 \right) + 7 \times 1 = 42 + 3 + 7 = 52 \\
$
Since, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 3 + 7 + 12 + 18 + 25 + 33 + 42 + 52 = 192$
Hence, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 192$
Hence option (b) is the correct answer.
So, the correct answer is “Option B”.
Note: In the question a student has to follow all the predefined functions and only have to put values according to the progressing way, and at last all the values for the final answer.
Complete step-by-step answer:
Given: $a,b,c \in R$, if $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy\,\,\,\forall x,y \in R$ then $\sum\limits_{n = 1}^8 {f\left( n \right)} $
Since, in the question $f\left( x \right)$ is defined as $f\left( x \right) = a{x^2} + bx + c$ so to solve it follow the function definition so,
$f\left( x \right) = a{x^2} + bx + c$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$
Now, $\sum\limits_{n = 1}^8 {f\left( n \right)} = f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right) + f\left( 4 \right) + f\left( 5 \right) + f\left( 6 \right) + f\left( 8 \right) + f\left( 8 \right)$
$\because f\left( 1 \right) = a{\left( 1 \right)^2} + b\left( 1 \right) + c = a + b + c = 3$
$f\left( 2 \right) = f\left( {1 + 1} \right) = f\left( 1 \right) + f\left( 1 \right) + 1 \times 1 = 3 + 3 + 1 = 7$ (Using $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy$)
$
f\left( 3 \right) = f\left( {2 + 1} \right) = f\left( 2 \right) + f\left( 1 \right) + 2 \times 1 = 7 + 3 + 2 = 12 \\
f\left( 4 \right) = f\left( {3 + 1} \right) = f\left( 3 \right) + f\left( 1 \right) + 3 \times 1 = 12 + 3 + 3 = 18 \\
f\left( 5 \right) = f\left( {4 + 1} \right) = f\left( 4 \right) + f\left( 1 \right) + 4 \times 1 = 18 + 3 + 4 = 25 \\
f\left( 6 \right) = f\left( {5 + 1} \right) = f\left( 5 \right) + f\left( 1 \right) + 5 \times 1 = 25 + 3 + 5 = 33 \\
f\left( 7 \right) = f\left( {6 + 1} \right) = f\left( 6 \right) + f\left( 1 \right) + 6 \times 1 = 33 + 3 + 6 = 42 \\
f\left( 8 \right) = f\left( {7 + 1} \right) = f\left( 7 \right) + f\left( 1 \right) + 7 \times 1 = 42 + 3 + 7 = 52 \\
$
Since, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 3 + 7 + 12 + 18 + 25 + 33 + 42 + 52 = 192$
Hence, $\sum\limits_{n = 1}^8 {f\left( n \right)} = 192$
Hence option (b) is the correct answer.
So, the correct answer is “Option B”.
Note: In the question a student has to follow all the predefined functions and only have to put values according to the progressing way, and at last all the values for the final answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

