
Let $A,B$ and $C$ be three events, which are pairwise independence and $\overline E $ denotes the complement of an event $E$. If $P\left( {A \cap B \cap C} \right) = 0$ and $P\left( C \right) > 0$, then $P\left[ {\left( {\overline A \cap \overline B } \right)|C} \right]$ is equal to:
(A) $P\left( A \right) + P\left( {\overline B } \right)$
(B) $P\left( {\overline A } \right) - P\left( {\overline B } \right)$
(C) $P\left( {\overline A } \right) - P\left( B \right)$
(D) $P\left( {\overline A } \right) + P\left( {\overline B } \right)$
Answer
564.6k+ views
Hint: The events are called pairwise independent if any two events in the collection are independent of each other. If three events $X,Y$ and $Z$ are pairwise independent, then $P\left( {X \cap Y} \right) = P\left( X \right) \cdot P\left( Y \right)$, $P\left( {Y \cap Z} \right) = P\left( Y \right) \cdot P\left( Z \right)$ and $P\left( {X \cap Z} \right) = P\left( X \right) \cdot P\left( Z \right)$.
Complete step-by-step answer:
Given, $P\left( {A \cap B \cap C} \right) = 0$ and $A,B$ and $C$ are pair-wise independent events, therefore,
$P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)$
$P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)$
\[P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right)\]
$P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right]$ is of the form of $P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}$.
Therefore, $P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right]$$ = \dfrac{{P\left[ {\left( {\overline A \cap \overline B } \right) \cap C} \right]}}{{P\left( C \right)}}$
$ = \dfrac{{P\left( C \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)}}{{P\left( C \right)}}$
Substitute \[P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right)\], $P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)$and $P\left( {A \cap B \cap C} \right) = 0$,
$ = \dfrac{{P\left( C \right) - P\left( A \right) \cdot P\left( C \right) - P\left( B \right) \cdot P\left( C \right) + 0}}{{P\left( C \right)}}$
$ = \dfrac{{P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( A \right) \cdot P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( B \right) \cdot P\left( C \right)}}{{P\left( C \right)}}$
$ = 1 - P\left( A \right) - P\left( B \right)$
$ = P\left( {\overline A } \right) - P\left( B \right)$
Hence, option (C) is the correct answer.
Note: The term $1 - P\left( A \right) - P\left( B \right)$ may also be equal to $P\left( A \right) - P\left( {\overline B } \right)$. So, if we get $P\left( A \right) - P\left( {\overline B } \right)$ as an option, then it would be the correct. While if we got both $P\left( {\overline A } \right) - P\left( B \right)$ and $P\left( A \right) - P\left( {\overline B } \right)$ as options, the both will be correct.
Complete step-by-step answer:
Given, $P\left( {A \cap B \cap C} \right) = 0$ and $A,B$ and $C$ are pair-wise independent events, therefore,
$P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)$
$P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)$
\[P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right)\]
$P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right]$ is of the form of $P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}$.
Therefore, $P\left[ {\dfrac{{\left( {\overline A \cap \overline B } \right)}}{C}} \right]$$ = \dfrac{{P\left[ {\left( {\overline A \cap \overline B } \right) \cap C} \right]}}{{P\left( C \right)}}$
$ = \dfrac{{P\left( C \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)}}{{P\left( C \right)}}$
Substitute \[P\left( {A \cap C} \right) = P\left( A \right) \cdot P\left( C \right)\], $P\left( {B \cap C} \right) = P\left( B \right) \cdot P\left( C \right)$and $P\left( {A \cap B \cap C} \right) = 0$,
$ = \dfrac{{P\left( C \right) - P\left( A \right) \cdot P\left( C \right) - P\left( B \right) \cdot P\left( C \right) + 0}}{{P\left( C \right)}}$
$ = \dfrac{{P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( A \right) \cdot P\left( C \right)}}{{P\left( C \right)}} - \dfrac{{P\left( B \right) \cdot P\left( C \right)}}{{P\left( C \right)}}$
$ = 1 - P\left( A \right) - P\left( B \right)$
$ = P\left( {\overline A } \right) - P\left( B \right)$
Hence, option (C) is the correct answer.
Note: The term $1 - P\left( A \right) - P\left( B \right)$ may also be equal to $P\left( A \right) - P\left( {\overline B } \right)$. So, if we get $P\left( A \right) - P\left( {\overline B } \right)$ as an option, then it would be the correct. While if we got both $P\left( {\overline A } \right) - P\left( B \right)$ and $P\left( A \right) - P\left( {\overline B } \right)$ as options, the both will be correct.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

