
Let ${a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}$ be in A.P. such that $\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$ and ${a_9} + {a_{43}} = 66$. If ${a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m$, then $m$ is equal to
A) $34$
B) $33$
C) 66
D) 68
Answer
564.3k+ views
Hint: Here given ${a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}$are in A.P.
Let ${a_1} = a$ and common difference$ = d$
$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$ that means ${a_1} + {a_5} + {a_9} + {\text{ - - - - - - - - - + }}{{\text{a}}_{49}} = 416$
So, we can put ${a_1} = a$, ${a_5} = a + 4d$, ${a_9} = a + 8d$ and so on. In this way we can find a relation between $a$ and $d$.
Complete step-by-step answer:
So, here according to the question, it is given that ${a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}$are in A.P.
So, let the first term of A.P. that is ${a_1}$ be $a$ and the common difference be $d$.
Then the ${n^{th}}$term of A.P. is given by
${T_n} = a + \left( {n - 1} \right)d$
So, ${a_5} = a + 4d$
And here it is also given that $\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$. So, this means if we put $k = 0{\text{ , }}k = 1$ and sum it up, we will get ${a_1} + {a_5} + {a_9} + {a_{13}}{\text{ + }}{{\text{a}}_{17}}{\text{ + - - - - - - - - - + }}{{\text{a}}_{49}} = 416$
Now we can write ${a_5} = a + 4d$, ${a_9} = a + 8d$ and so on.
$
a + a + 4d + a + 8d + a + 12d + {\text{ - - - - - - - - - }} + a + 48d = 416 \\
a\left( {1 + 1 + {\text{ - - - - - }}13{\text{ times}}} \right) + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416 \\
13a + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416……………….{\text{ (1)}} \\
$
And we know the formula of
$
1 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{so, for }}n = 12, \\
{\text{we get}} \\
1 + 2 + 3 + {\text{ - - - - - 12 = }}\dfrac{{12 \times 13}}{2} = 78 \\
$
So, we get
$
\Rightarrow 13a + 4d\left( {78} \right) = 416 \\
\Rightarrow 13\left( {a + 24d} \right) = 416 \\
\Rightarrow a + 24d = 32…………………...{\text{ (2)}}
$
Also, in question it is given that
$
{a_9} + {a_{43}} = 66 \\
\Rightarrow a + 8d + a + 42d = 66 \\
2a + 50d = 66 \\
a + 25d = 33…………………...{\text{ (3)}}
$
Now subtract equation (2) from (3),
$
\left( {a + 25d} \right) - \left( {a + 24d} \right) = 33 - 32 \\
d = 1 \\
$
So,
$
\Rightarrow a + 24d = 32 \\
\Rightarrow a + 24 = 32 \\
\Rightarrow a = 8
$
Here we got $a = 8$ and $d = 1$
So, we have ${a_1} = 8$, ${a_2} = 8 + d$${a_3} = 8 + 2d$ and so on.
${a_1} = 8,{\text{ }}{a_2} = 9,{\text{ }}{a_3} = 10,{\text{ }}{a_4} = 11{\text{ and so on}}..$${a_{17}} = a + 16d = 8 + 16 = 24$
And now we are given ${a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m$
We have to find the value of $m$
${a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m$
So, putting the values, we get
${8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m$
We know that
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Now, if $n = 24$, we get
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6}....................{\text{ (4)}}$
Now, if $n = 7$, we get
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - + }}{{\text{7}}^2} = \dfrac{{7 \times 8 \times 15}}{6}...................{\text{ (5)}}$
Now subtracting equation (5) by (4), we get
$
\Rightarrow {8^2} + {9^2} + {10^2} + {\text{ - - - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6} - \dfrac{{7 \times 8 \times 15}}{6} \\
= 4 \times 25 \times 49 - 7 \times 4 \times 5
$
As we know ${8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m$
So,
$
\Rightarrow 140m = 4900 - 140 \\
\Rightarrow 140m = 4760 \\
\Rightarrow m = \dfrac{{4760}}{{140}} = 34 \\
m = 34
$
So, option A is the correct answer.
Note: We must know the basic formulas that
$1 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2}$
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
${1^3} + {2^3} + {3^3} + {\text{ - - - - - - - + }}{n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}$
And we know sum of A.P. is ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Let ${a_1} = a$ and common difference$ = d$
$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$ that means ${a_1} + {a_5} + {a_9} + {\text{ - - - - - - - - - + }}{{\text{a}}_{49}} = 416$
So, we can put ${a_1} = a$, ${a_5} = a + 4d$, ${a_9} = a + 8d$ and so on. In this way we can find a relation between $a$ and $d$.
Complete step-by-step answer:
So, here according to the question, it is given that ${a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}$are in A.P.
So, let the first term of A.P. that is ${a_1}$ be $a$ and the common difference be $d$.
Then the ${n^{th}}$term of A.P. is given by
${T_n} = a + \left( {n - 1} \right)d$
So, ${a_5} = a + 4d$
And here it is also given that $\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$. So, this means if we put $k = 0{\text{ , }}k = 1$ and sum it up, we will get ${a_1} + {a_5} + {a_9} + {a_{13}}{\text{ + }}{{\text{a}}_{17}}{\text{ + - - - - - - - - - + }}{{\text{a}}_{49}} = 416$
Now we can write ${a_5} = a + 4d$, ${a_9} = a + 8d$ and so on.
$
a + a + 4d + a + 8d + a + 12d + {\text{ - - - - - - - - - }} + a + 48d = 416 \\
a\left( {1 + 1 + {\text{ - - - - - }}13{\text{ times}}} \right) + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416 \\
13a + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416……………….{\text{ (1)}} \\
$
And we know the formula of
$
1 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{so, for }}n = 12, \\
{\text{we get}} \\
1 + 2 + 3 + {\text{ - - - - - 12 = }}\dfrac{{12 \times 13}}{2} = 78 \\
$
So, we get
$
\Rightarrow 13a + 4d\left( {78} \right) = 416 \\
\Rightarrow 13\left( {a + 24d} \right) = 416 \\
\Rightarrow a + 24d = 32…………………...{\text{ (2)}}
$
Also, in question it is given that
$
{a_9} + {a_{43}} = 66 \\
\Rightarrow a + 8d + a + 42d = 66 \\
2a + 50d = 66 \\
a + 25d = 33…………………...{\text{ (3)}}
$
Now subtract equation (2) from (3),
$
\left( {a + 25d} \right) - \left( {a + 24d} \right) = 33 - 32 \\
d = 1 \\
$
So,
$
\Rightarrow a + 24d = 32 \\
\Rightarrow a + 24 = 32 \\
\Rightarrow a = 8
$
Here we got $a = 8$ and $d = 1$
So, we have ${a_1} = 8$, ${a_2} = 8 + d$${a_3} = 8 + 2d$ and so on.
${a_1} = 8,{\text{ }}{a_2} = 9,{\text{ }}{a_3} = 10,{\text{ }}{a_4} = 11{\text{ and so on}}..$${a_{17}} = a + 16d = 8 + 16 = 24$
And now we are given ${a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m$
We have to find the value of $m$
${a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m$
So, putting the values, we get
${8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m$
We know that
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Now, if $n = 24$, we get
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6}....................{\text{ (4)}}$
Now, if $n = 7$, we get
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - + }}{{\text{7}}^2} = \dfrac{{7 \times 8 \times 15}}{6}...................{\text{ (5)}}$
Now subtracting equation (5) by (4), we get
$
\Rightarrow {8^2} + {9^2} + {10^2} + {\text{ - - - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6} - \dfrac{{7 \times 8 \times 15}}{6} \\
= 4 \times 25 \times 49 - 7 \times 4 \times 5
$
As we know ${8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m$
So,
$
\Rightarrow 140m = 4900 - 140 \\
\Rightarrow 140m = 4760 \\
\Rightarrow m = \dfrac{{4760}}{{140}} = 34 \\
m = 34
$
So, option A is the correct answer.
Note: We must know the basic formulas that
$1 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2}$
${1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
${1^3} + {2^3} + {3^3} + {\text{ - - - - - - - + }}{n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}$
And we know sum of A.P. is ${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

