
Let, ${a_1} > {a_2} > {a_3} > ....... > {a_n} > 1$, ${p_1} > {p_2} > {p_3} > ..... > {p_n} > 0$, such that ${p_1} + {p_2} + {p_3} + ... + {p_n} = 1$. Also, $F\left( x \right) = {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$, then $\mathop {\lim }\limits_{x \to \infty } F\left( x \right)$ equals.
$\left( a \right)\ln {a_n}$
$\left( b \right){e^{{a_1}}}$
$\left( c \right){a_1}$
$\left( d \right){a_n}$
Answer
595.2k+ views
Hint: In this particular question use the concept that if, ${a_1} > {a_2}$then, $\dfrac{{{a_2}}}{{{a_1}}} < 1$ therefore, ${\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)^\infty } = {\left( { < 1} \right)^\infty } = 0$ and take log on both sides then check whether on a given limit it will become indeterminate form or not if yes then apply L’ hospitals’ Rule i.e. differentiate numerator and denominator separately so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
${a_1} > {a_2} > {a_3} > ....... > {a_n} > 1$
${p_1} > {p_2} > {p_3} > ..... > {p_n} > 0$
${p_1} + {p_2} + {p_3} + ... + {p_n} = 1$
$F\left( x \right) = {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Since, ${a_1} > {a_2}$
Therefore, $\dfrac{{{a_2}}}{{{a_1}}} < 1$
So, ${\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)^\infty } = {\left( { < 1} \right)^\infty } = 0$
Similarly, ${\left( {\dfrac{{{a_3}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_4}}}{{{a_1}}}} \right)^\infty } = ..... = {\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)^\infty } = 0$.................. (1)
Now we have to find out the value of $\mathop {\lim }\limits_{x \to \infty } F\left( x \right)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } F\left( x \right) = \mathop {\lim }\limits_{x \to \infty } {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Let, $L = \mathop {\lim }\limits_{x \to \infty } {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Now take logs on both sides we have.
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \log {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Now according to logarithmic property $\log {a^b} = b\log a$ so use this property in the above equation we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x}.\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)}}{x}$
Now when we put $x = \infty $ the above equation is in the form of $\dfrac{\infty }{\infty }$ which is an indeterminate form, so apply L’ hospitals’ rule we have,
According to L’ hospitals’ rule differentiate numerator and denominator separately we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{d}{{dx}}\left[ {\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)} \right]}}{{\dfrac{d}{{dx}}x}}$
Now as we know that, $\dfrac{d}{{dx}}\log g\left( x \right) = \dfrac{1}{{g\left( x \right)}}\left( {\dfrac{d}{{dx}}g\left( x \right)} \right),\dfrac{d}{{dx}}{a^x} = {a^x}\log a,\dfrac{d}{{dx}}x = 1$, so use this property in the above equation we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}\left[ {\dfrac{d}{{dx}}\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)} \right]}}{1}$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}\left( {{p_1}a_1^x\log {a_1} + {p_2}a_2^x\log {a_2} + .... + {p_n}a_n^x\log {a_n}} \right)}}{1}$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {{p_1}a_1^x\log {a_1} + {p_2}a_2^x\log {a_2} + .... + {p_n}a_n^x\log {a_n}} \right)}}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}$
Now divide the numerator and denominator of the above equation by $a_i^x$, so we have,
\[ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {{p_1}\log {a_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^x}\log {a_2} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^x}\log {a_n}} \right)}}{{{p_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^x} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^x}}}\]
Now apply the limit we have,
\[ \Rightarrow \log L = \dfrac{{\left( {{p_1}\log {a_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^\infty }\log {a_2} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^\infty }\log {a_n}} \right)}}{{{p_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^\infty } + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^\infty }}}\]
Now from equation (1) we have,
${\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_3}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_4}}}{{{a_1}}}} \right)^\infty } = ..... = {\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)^\infty } = 0$
\[ \Rightarrow \log L = \dfrac{{\left( {{p_1}\log {a_1} + {p_2}\left( 0 \right)\log {a_2} + .... + {p_n}\left( 0 \right)\log {a_n}} \right)}}{{{p_1} + {p_2}\left( 0 \right) + .... + {p_n}\left( 0 \right)}}\]
\[ \Rightarrow \log L = \dfrac{{{p_1}\log {a_1}}}{{{p_1}}}\]
\[ \Rightarrow \log L = \log {a_1}\]
\[ \Rightarrow L = {a_1}\]
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept involved in this taking log on both sides as above and always recall the basic differentiation formula of log which all stated above, so apply this as above and simplify as above we will get the required answer.
Complete step by step answer:
Given data:
${a_1} > {a_2} > {a_3} > ....... > {a_n} > 1$
${p_1} > {p_2} > {p_3} > ..... > {p_n} > 0$
${p_1} + {p_2} + {p_3} + ... + {p_n} = 1$
$F\left( x \right) = {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Since, ${a_1} > {a_2}$
Therefore, $\dfrac{{{a_2}}}{{{a_1}}} < 1$
So, ${\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)^\infty } = {\left( { < 1} \right)^\infty } = 0$
Similarly, ${\left( {\dfrac{{{a_3}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_4}}}{{{a_1}}}} \right)^\infty } = ..... = {\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)^\infty } = 0$.................. (1)
Now we have to find out the value of $\mathop {\lim }\limits_{x \to \infty } F\left( x \right)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } F\left( x \right) = \mathop {\lim }\limits_{x \to \infty } {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Let, $L = \mathop {\lim }\limits_{x \to \infty } {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Now take logs on both sides we have.
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \log {\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)^{\dfrac{1}{x}}}$
Now according to logarithmic property $\log {a^b} = b\log a$ so use this property in the above equation we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x}.\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)}}{x}$
Now when we put $x = \infty $ the above equation is in the form of $\dfrac{\infty }{\infty }$ which is an indeterminate form, so apply L’ hospitals’ rule we have,
According to L’ hospitals’ rule differentiate numerator and denominator separately we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{d}{{dx}}\left[ {\log \left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)} \right]}}{{\dfrac{d}{{dx}}x}}$
Now as we know that, $\dfrac{d}{{dx}}\log g\left( x \right) = \dfrac{1}{{g\left( x \right)}}\left( {\dfrac{d}{{dx}}g\left( x \right)} \right),\dfrac{d}{{dx}}{a^x} = {a^x}\log a,\dfrac{d}{{dx}}x = 1$, so use this property in the above equation we have,
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}\left[ {\dfrac{d}{{dx}}\left( {{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x} \right)} \right]}}{1}$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}\left( {{p_1}a_1^x\log {a_1} + {p_2}a_2^x\log {a_2} + .... + {p_n}a_n^x\log {a_n}} \right)}}{1}$
$ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {{p_1}a_1^x\log {a_1} + {p_2}a_2^x\log {a_2} + .... + {p_n}a_n^x\log {a_n}} \right)}}{{{p_1}a_1^x + {p_2}a_2^x + .... + {p_n}a_n^x}}$
Now divide the numerator and denominator of the above equation by $a_i^x$, so we have,
\[ \Rightarrow \log L = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {{p_1}\log {a_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^x}\log {a_2} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^x}\log {a_n}} \right)}}{{{p_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^x} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^x}}}\]
Now apply the limit we have,
\[ \Rightarrow \log L = \dfrac{{\left( {{p_1}\log {a_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^\infty }\log {a_2} + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^\infty }\log {a_n}} \right)}}{{{p_1} + {p_2}{{\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)}^\infty } + .... + {p_n}{{\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)}^\infty }}}\]
Now from equation (1) we have,
${\left( {\dfrac{{{a_2}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_3}}}{{{a_1}}}} \right)^\infty } = {\left( {\dfrac{{{a_4}}}{{{a_1}}}} \right)^\infty } = ..... = {\left( {\dfrac{{{a_n}}}{{{a_1}}}} \right)^\infty } = 0$
\[ \Rightarrow \log L = \dfrac{{\left( {{p_1}\log {a_1} + {p_2}\left( 0 \right)\log {a_2} + .... + {p_n}\left( 0 \right)\log {a_n}} \right)}}{{{p_1} + {p_2}\left( 0 \right) + .... + {p_n}\left( 0 \right)}}\]
\[ \Rightarrow \log L = \dfrac{{{p_1}\log {a_1}}}{{{p_1}}}\]
\[ \Rightarrow \log L = \log {a_1}\]
\[ \Rightarrow L = {a_1}\]
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept involved in this taking log on both sides as above and always recall the basic differentiation formula of log which all stated above, so apply this as above and simplify as above we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

