
Let a function is given as \[f(x)=\left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|\], then find the value of \[f'(0)\] and \[f'\left( \dfrac{\pi }{2} \right)\].
Answer
618.3k+ views
Hint: If we write a determinant as \[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\], then the derivative of the determinant can be written as \[\dfrac{d}{dx}\left( \Delta \right)=\left| \begin{matrix}
a_{1}^{'} & a_{2}^{'} & a_{3}^{'} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
b_{1}^{'} & b_{2}^{'} & b_{3}^{'} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
c_{1}^{'} & c_{2}^{'} & c_{3}^{'} \\
\end{matrix} \right|\].
Complete step by step answer:
We are given \[f(x)=\left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|\]. We need to find the value of \[f'(0)\] and \[f'\left( \dfrac{\pi }{2} \right)\].
To find the value of \[f'(0)\] and \[f'\left( \dfrac{\pi }{2} \right)\] , first , we need to determine the value of \[f'(x)\].
Now , to find the value of \[f'(x)\], we will differentiate the given function with respect to \[x\] .
We know , if \[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\], then \[\dfrac{d}{dx}\left( \Delta \right)=\left| \begin{matrix}
a_{1}^{'} & a_{2}^{'} & a_{3}^{'} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
b_{1}^{'} & b_{2}^{'} & b_{3}^{'} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
c_{1}^{'} & c_{2}^{'} & c_{3}^{'} \\
\end{matrix} \right|\]
So , on differentiating the given determinant with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f(x)=\left| \begin{matrix}
\dfrac{d}{dx}\left( \cos x \right) & \dfrac{d}{dx}\left( \sin x \right) & \dfrac{d}{dx}\left( \cos x \right) \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+\left| \begin{matrix}
\cos x & \sin x & \cos x \\
\dfrac{d}{dx}\left( \cos 2x \right) & \dfrac{d}{dx}\left( \sin 2x \right) & \dfrac{d}{dx}\left( 2\cos 2x \right) \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\dfrac{d}{dx}\left( \cos 3x \right) & \dfrac{d}{dx}\left( \sin 3x \right) & \dfrac{d}{dx}\left( 3\cos 3x \right) \\
\end{matrix} \right| \\
\end{align}\]
Now ,
\[\begin{align}
& \dfrac{d}{dx}f(x)=\left| \begin{matrix}
-\sin x & \cos x & -\sin x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+\left| \begin{matrix}
\cos x & \sin x & \cos x \\
-2\sin 2x & 2\cos 2x & -4\sin 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
-3\sin 3x & 3\cos 3x & -9\sin 3x \\
\end{matrix} \right| \\
\end{align}\]
Now , we will determine the value of\[f'(0)\].
To evaluate\[f'(0)\], we will substitute \[0\]in place of \[x\] in the expression of \[f'(x)\].
On substituting \[0\]in place of \[x\] in the expression of \[f'(x)\], we get
\[\begin{align}
& {{f}^{'}}(0)=\left| \begin{matrix}
-\sin 0 & \cos 0 & -\sin 0 \\
\cos 2(0) & \sin 2(0) & 2\cos 2(0) \\
\cos 3(0) & \sin 3(0) & 3\cos 3(0) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos 0 & \sin 0 & \cos 0 \\
-2\sin 2(0) & 2\cos 2(0) & -4\sin 2(0) \\
\cos 3(0) & \sin 3(0) & 3\cos 3(0) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos 0 & \sin 0 & \cos 0 \\
\cos 2(0) & \sin 2(0) & 2\cos 2(0) \\
-3\sin 3(0) & 3\cos 3(0) & -9\sin 3(0) \\
\end{matrix} \right| \\
\end{align}\]
\[=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
1 & 0 & 1 \\
1 & 0 & 2 \\
0 & 3 & 0 \\
\end{matrix} \right|\]
Now , we will determine the values of the determinants , add them to determine the value of \[f'(0)\].
\[\begin{align}
& f'(0)=\{-1(3-2)\}+\{1(6-0)+1(0-2)\}+\{1(0-6)+1(3-0)\} \\
& =-1+6-2-6+3 \\
& =0 \\
\end{align}\]
Now we will determine the value of\[f'\left( \dfrac{\pi }{2} \right)\].
To evaluate \[f'\left( \dfrac{\pi }{2} \right)\] , we will substitute \[\dfrac{\pi }{2}\]in place of \[x\] in the expression of \[f'(x)\].
On substituting \[\dfrac{\pi }{2}\]in place of \[x\] in the expression of \[f'(x)\], we get \[\begin{align}
& {{f}^{'}}\left( \dfrac{\pi }{2} \right)=\left| \begin{matrix}
-\sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) & -\sin (\dfrac{\pi }{2}) \\
\cos 2(\dfrac{\pi }{2}) & \sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
-2\sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) & -4\sin 2(\dfrac{\pi }{2}) \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
\cos 2(\dfrac{\pi }{2}) & \sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) \\
-3\sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) & -9\sin 3(\dfrac{\pi }{2}) \\
\end{matrix} \right| \\
\end{align}\]
\[\begin{align}
& =\left| \begin{matrix}
-\sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) & -\sin (\dfrac{\pi }{2}) \\
\cos \pi & \sin \pi & 2\cos \pi \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
-2\sin \pi & 2\cos \pi & -4\sin \pi \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
\cos \pi & \sin \pi & 2\cos \pi \\
-3\sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) & -9\sin 3(\dfrac{\pi }{2}) \\
\end{matrix} \right| \\
\end{align}\]
\[=\left| \begin{matrix}
-1 & 0 & -1 \\
-1 & 0 & -2 \\
0 & -1 & 0 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 1 & 0 \\
0 & -2 & 0 \\
0 & -1 & 0 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 1 & 0 \\
-1 & 0 & -2 \\
3 & 0 & 9 \\
\end{matrix} \right|\]
Now , we will determine the values of the determinants , add them to determine the value of \[{{f}^{'}}\left( \dfrac{\pi }{2} \right)\].
\[{{f}^{'}}\left( \dfrac{\pi }{2} \right)=\{-1(0-2)-0(0-0)-1(1-0\}+\{0(0-0)-1(0-0)+0(0-0)\}+\{0(0-0)-1(-9+6)+0(0-0)\}\]
\[=2-1+3\]
\[=4\]
Hence , the value of\[f'(0)\] is \[0\] and the value of\[f'(\dfrac{\pi }{2})\] is \[4\] .
Note: Always remember that the derivative of \[\sin x\]is \[\cos x\]and not \[-\cos x\]. Also, the derivative of \[\cos x\] is\[-\sin x\]and not \[\sin x\]. Students often get confused between the two and make mistakes . Due to such mistakes , students often end up getting a wrong answer. So , such mistakes should be avoided .
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\], then the derivative of the determinant can be written as \[\dfrac{d}{dx}\left( \Delta \right)=\left| \begin{matrix}
a_{1}^{'} & a_{2}^{'} & a_{3}^{'} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
b_{1}^{'} & b_{2}^{'} & b_{3}^{'} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
c_{1}^{'} & c_{2}^{'} & c_{3}^{'} \\
\end{matrix} \right|\].
Complete step by step answer:
We are given \[f(x)=\left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|\]. We need to find the value of \[f'(0)\] and \[f'\left( \dfrac{\pi }{2} \right)\].
To find the value of \[f'(0)\] and \[f'\left( \dfrac{\pi }{2} \right)\] , first , we need to determine the value of \[f'(x)\].
Now , to find the value of \[f'(x)\], we will differentiate the given function with respect to \[x\] .
We know , if \[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\], then \[\dfrac{d}{dx}\left( \Delta \right)=\left| \begin{matrix}
a_{1}^{'} & a_{2}^{'} & a_{3}^{'} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
b_{1}^{'} & b_{2}^{'} & b_{3}^{'} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|+\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
c_{1}^{'} & c_{2}^{'} & c_{3}^{'} \\
\end{matrix} \right|\]
So , on differentiating the given determinant with respect to \[x\], we get
\[\begin{align}
& \dfrac{d}{dx}f(x)=\left| \begin{matrix}
\dfrac{d}{dx}\left( \cos x \right) & \dfrac{d}{dx}\left( \sin x \right) & \dfrac{d}{dx}\left( \cos x \right) \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+\left| \begin{matrix}
\cos x & \sin x & \cos x \\
\dfrac{d}{dx}\left( \cos 2x \right) & \dfrac{d}{dx}\left( \sin 2x \right) & \dfrac{d}{dx}\left( 2\cos 2x \right) \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\dfrac{d}{dx}\left( \cos 3x \right) & \dfrac{d}{dx}\left( \sin 3x \right) & \dfrac{d}{dx}\left( 3\cos 3x \right) \\
\end{matrix} \right| \\
\end{align}\]
Now ,
\[\begin{align}
& \dfrac{d}{dx}f(x)=\left| \begin{matrix}
-\sin x & \cos x & -\sin x \\
\cos 2x & \sin 2x & 2\cos 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+\left| \begin{matrix}
\cos x & \sin x & \cos x \\
-2\sin 2x & 2\cos 2x & -4\sin 2x \\
\cos 3x & \sin 3x & 3\cos 3x \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos x & \sin x & \cos x \\
\cos 2x & \sin 2x & 2\cos 2x \\
-3\sin 3x & 3\cos 3x & -9\sin 3x \\
\end{matrix} \right| \\
\end{align}\]
Now , we will determine the value of\[f'(0)\].
To evaluate\[f'(0)\], we will substitute \[0\]in place of \[x\] in the expression of \[f'(x)\].
On substituting \[0\]in place of \[x\] in the expression of \[f'(x)\], we get
\[\begin{align}
& {{f}^{'}}(0)=\left| \begin{matrix}
-\sin 0 & \cos 0 & -\sin 0 \\
\cos 2(0) & \sin 2(0) & 2\cos 2(0) \\
\cos 3(0) & \sin 3(0) & 3\cos 3(0) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos 0 & \sin 0 & \cos 0 \\
-2\sin 2(0) & 2\cos 2(0) & -4\sin 2(0) \\
\cos 3(0) & \sin 3(0) & 3\cos 3(0) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos 0 & \sin 0 & \cos 0 \\
\cos 2(0) & \sin 2(0) & 2\cos 2(0) \\
-3\sin 3(0) & 3\cos 3(0) & -9\sin 3(0) \\
\end{matrix} \right| \\
\end{align}\]
\[=\left| \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 3 \\
\end{matrix} \right|+\left| \begin{matrix}
1 & 0 & 1 \\
1 & 0 & 2 \\
0 & 3 & 0 \\
\end{matrix} \right|\]
Now , we will determine the values of the determinants , add them to determine the value of \[f'(0)\].
\[\begin{align}
& f'(0)=\{-1(3-2)\}+\{1(6-0)+1(0-2)\}+\{1(0-6)+1(3-0)\} \\
& =-1+6-2-6+3 \\
& =0 \\
\end{align}\]
Now we will determine the value of\[f'\left( \dfrac{\pi }{2} \right)\].
To evaluate \[f'\left( \dfrac{\pi }{2} \right)\] , we will substitute \[\dfrac{\pi }{2}\]in place of \[x\] in the expression of \[f'(x)\].
On substituting \[\dfrac{\pi }{2}\]in place of \[x\] in the expression of \[f'(x)\], we get \[\begin{align}
& {{f}^{'}}\left( \dfrac{\pi }{2} \right)=\left| \begin{matrix}
-\sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) & -\sin (\dfrac{\pi }{2}) \\
\cos 2(\dfrac{\pi }{2}) & \sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
-2\sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) & -4\sin 2(\dfrac{\pi }{2}) \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
\cos 2(\dfrac{\pi }{2}) & \sin 2(\dfrac{\pi }{2}) & 2\cos 2(\dfrac{\pi }{2}) \\
-3\sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) & -9\sin 3(\dfrac{\pi }{2}) \\
\end{matrix} \right| \\
\end{align}\]
\[\begin{align}
& =\left| \begin{matrix}
-\sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) & -\sin (\dfrac{\pi }{2}) \\
\cos \pi & \sin \pi & 2\cos \pi \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+\left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
-2\sin \pi & 2\cos \pi & -4\sin \pi \\
\cos 3(\dfrac{\pi }{2}) & \sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) \\
\end{matrix} \right|+ \\
& \left| \begin{matrix}
\cos (\dfrac{\pi }{2}) & \sin (\dfrac{\pi }{2}) & \cos (\dfrac{\pi }{2}) \\
\cos \pi & \sin \pi & 2\cos \pi \\
-3\sin 3(\dfrac{\pi }{2}) & 3\cos 3(\dfrac{\pi }{2}) & -9\sin 3(\dfrac{\pi }{2}) \\
\end{matrix} \right| \\
\end{align}\]
\[=\left| \begin{matrix}
-1 & 0 & -1 \\
-1 & 0 & -2 \\
0 & -1 & 0 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 1 & 0 \\
0 & -2 & 0 \\
0 & -1 & 0 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 1 & 0 \\
-1 & 0 & -2 \\
3 & 0 & 9 \\
\end{matrix} \right|\]
Now , we will determine the values of the determinants , add them to determine the value of \[{{f}^{'}}\left( \dfrac{\pi }{2} \right)\].
\[{{f}^{'}}\left( \dfrac{\pi }{2} \right)=\{-1(0-2)-0(0-0)-1(1-0\}+\{0(0-0)-1(0-0)+0(0-0)\}+\{0(0-0)-1(-9+6)+0(0-0)\}\]
\[=2-1+3\]
\[=4\]
Hence , the value of\[f'(0)\] is \[0\] and the value of\[f'(\dfrac{\pi }{2})\] is \[4\] .
Note: Always remember that the derivative of \[\sin x\]is \[\cos x\]and not \[-\cos x\]. Also, the derivative of \[\cos x\] is\[-\sin x\]and not \[\sin x\]. Students often get confused between the two and make mistakes . Due to such mistakes , students often end up getting a wrong answer. So , such mistakes should be avoided .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

