
Let a function is given as $f(x) = \dfrac{{x + 1}}{{x - 1}}$ for all $x \ne 1.$
Let
${f^1}(x) = f(x),{f^2}(x) = f(f(x)){\text{ }}$ and generally
$
{f^n}(x) = f({f^{n - 1}}(x)){\text{ for }}n{\text{ > 1}} \\
{\text{Let }}P = {f^1}(2){f^2}(3){f^3}(4){f^4}(5) \\
$
Which of the following is a multiple of P?
$
{\text{A}}{\text{. 125}} \\
{\text{B}}{\text{. 375}} \\
{\text{C}}{\text{. 250}} \\
{\text{D}}{\text{. 147}} \\
$
Answer
613.2k+ views
Hint: In this question first we examine how the function ${f^n}(x)$ varies with even or odd values by solving the relations ${f^1}(x) = f(x),{f^2}(x) = f(f(x))$. After that we calculate values of ${f^1}(2),{f^2}(3),{f^3}(4),{f^4}(5)$ and put them in expression for $P$.
Complete step-by-step solution -
Given:
$f(x) = \dfrac{{x + 1}}{{x - 1}}$ for all $x \ne 1.$ …………….. eq.1
$ {f^1}(x) = f(x) $ …………….. eq.(2)
$ {f^2}(x) = f(f(x)) $ …………… eq.(3)
${f^n}(x) = f({f^{n - 1}}(x)){\text{ for }}n{\text{ > 1}}$ …………………. eq.4
Considering eq.3
$
\Rightarrow {f^2}(x) = f(f(x)) \\
\Rightarrow {f^2}(x) = \dfrac{{f(x) + 1}}{{f(x) - 1}} \\
\Rightarrow {f^2}(x) = \dfrac{{(\dfrac{{x + 1}}{{x - 1}}) + 1}}{{(\dfrac{{x + 1}}{{x - 1}}) - 1}} $ …………….. $ {\text{ \{ from eq}}{\text{.1\} }} \\
$
On solving above equation, we get
\[ \Rightarrow {f^2}(x) = x\] ………………………... eq.5
Since, 2 is an even number. So, eq.4 varies the same for all even values and for all odd numbers it varies the same as \[{f^1}(x)\]. Now, using eq.2 and eq.5 we can generalise the eq.4 as
$ {\text{if }}n = {\text{odd }} \Rightarrow {\text{ }}{f^n}(x) = f(x) $ ………….. eq.(6)
$ {\text{if }}n = {\text{even }} \Rightarrow {\text{ }}{f^n}(x) = x $ …………...eq.(7)
Now considering P
$ \Rightarrow P = {f^1}(2){f^2}(3){f^3}(4){f^4}(5)$ …………………. eq.8
For finding value of P we need to find
So,
$ \Rightarrow {f^1}(2) = \dfrac{{2 + 1}}{{2 - 1}} $
$ \text{From}\ \text{ eq. 6} $
$ \Rightarrow {f^1}(2) = 3 $.............eq.(9)
$ \text{From}\ \text{ eq. 7} $
$ \Rightarrow {f^2}(3) = 3 $............. eq.(10)
$ \text{From}\ \text{ eq. 6} $
$ \Rightarrow {f^3}(4) = \dfrac{5}{3} $............ eq(11)
$ \text{From}\ \text{ eq. 7} $
$ \Rightarrow {f^4}(5) = 5 $............ eq.(12)
Now, on putting values of ${f^1}(2),{f^2}(3),{f^3}(4),{f^4}(5)$ from eq.9, eq.10, eq.11, eq. 12 respectively into eq.8 we get
$
\Rightarrow P = 3 \times 3 \times \dfrac{5}{3} \times 5 \\
\Rightarrow P = 75 \\
$
Therefore, $P$ is 75 and 375 is multiple of $P$.
Hence option B. is correct.
Note:- Whenever you get this type of question the key concept to solve this is to find pattern in values of function ${f^n}(x)$ as in this question for $ n = {\text{even}} \Rightarrow {f^n}(x) = x$ and for ${\text{n = odd}} \Rightarrow {{\text{f}}^n}{\text{(}}x) = f(x)$.And one more thing to remember is that Multiple of P means any number that P divides evenly or any number for which P is a factor. So anything in the P times table is going to be a multiple of P.
Complete step-by-step solution -
Given:
$f(x) = \dfrac{{x + 1}}{{x - 1}}$ for all $x \ne 1.$ …………….. eq.1
$ {f^1}(x) = f(x) $ …………….. eq.(2)
$ {f^2}(x) = f(f(x)) $ …………… eq.(3)
${f^n}(x) = f({f^{n - 1}}(x)){\text{ for }}n{\text{ > 1}}$ …………………. eq.4
Considering eq.3
$
\Rightarrow {f^2}(x) = f(f(x)) \\
\Rightarrow {f^2}(x) = \dfrac{{f(x) + 1}}{{f(x) - 1}} \\
\Rightarrow {f^2}(x) = \dfrac{{(\dfrac{{x + 1}}{{x - 1}}) + 1}}{{(\dfrac{{x + 1}}{{x - 1}}) - 1}} $ …………….. $ {\text{ \{ from eq}}{\text{.1\} }} \\
$
On solving above equation, we get
\[ \Rightarrow {f^2}(x) = x\] ………………………... eq.5
Since, 2 is an even number. So, eq.4 varies the same for all even values and for all odd numbers it varies the same as \[{f^1}(x)\]. Now, using eq.2 and eq.5 we can generalise the eq.4 as
$ {\text{if }}n = {\text{odd }} \Rightarrow {\text{ }}{f^n}(x) = f(x) $ ………….. eq.(6)
$ {\text{if }}n = {\text{even }} \Rightarrow {\text{ }}{f^n}(x) = x $ …………...eq.(7)
Now considering P
$ \Rightarrow P = {f^1}(2){f^2}(3){f^3}(4){f^4}(5)$ …………………. eq.8
For finding value of P we need to find
So,
$ \Rightarrow {f^1}(2) = \dfrac{{2 + 1}}{{2 - 1}} $
$ \text{From}\ \text{ eq. 6} $
$ \Rightarrow {f^1}(2) = 3 $.............eq.(9)
$ \text{From}\ \text{ eq. 7} $
$ \Rightarrow {f^2}(3) = 3 $............. eq.(10)
$ \text{From}\ \text{ eq. 6} $
$ \Rightarrow {f^3}(4) = \dfrac{5}{3} $............ eq(11)
$ \text{From}\ \text{ eq. 7} $
$ \Rightarrow {f^4}(5) = 5 $............ eq.(12)
Now, on putting values of ${f^1}(2),{f^2}(3),{f^3}(4),{f^4}(5)$ from eq.9, eq.10, eq.11, eq. 12 respectively into eq.8 we get
$
\Rightarrow P = 3 \times 3 \times \dfrac{5}{3} \times 5 \\
\Rightarrow P = 75 \\
$
Therefore, $P$ is 75 and 375 is multiple of $P$.
Hence option B. is correct.
Note:- Whenever you get this type of question the key concept to solve this is to find pattern in values of function ${f^n}(x)$ as in this question for $ n = {\text{even}} \Rightarrow {f^n}(x) = x$ and for ${\text{n = odd}} \Rightarrow {{\text{f}}^n}{\text{(}}x) = f(x)$.And one more thing to remember is that Multiple of P means any number that P divides evenly or any number for which P is a factor. So anything in the P times table is going to be a multiple of P.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

