
Let a, b, c be such that b (a + c) $ \ne $0. If \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right| = 0\], then the value of n is
(A). Zero
(B). Any even integer
(C). Any odd integer
(D). Any integer
Answer
587.4k+ views
Hint: Before attempting this question, one should have prior knowledge about the concept of determinants and also remember to use row and column transformation method, use this information to approach the solution of the question.
Complete step-by-step answer:
\[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right| = 0\]
Let \[D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\] and \[A = \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right|\]
Taking ${\left( { - 1} \right)^n}$as common for A
\[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\text{ }}a{\text{ }} - b{\text{ }}c \\
\end{gathered} \right| = 0\]
Now using the property of transpose i.e.${\left| A \right|^T} = \left| A \right|$
\[{\left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\text{ }}a{\text{ }} - b{\text{ }}c \\
\end{gathered} \right|^T} = \left| \begin{gathered}
a + 1{\text{ }}a - 1{\text{ }}a \\
b + 1{\text{ }}b - 1{\text{ }} - b \\
c - 1{\text{ }}c + 1{\text{ }}c \\
\end{gathered} \right|\]
Therefore, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a + 1{\text{ }}a - 1{\text{ }}a \\
b + 1{\text{ }}b - 1{\text{ }} - b \\
c - 1{\text{ }}c + 1{\text{ }}c \\
\end{gathered} \right| = 0\]
Now, using the rows and column transformation method in the determinant A
As we use ${C_2} \leftrightarrow {C_3}$in the determinant A the sign of determinant A will change
\[{\left( { - 1} \right)^n}\left( - \right)\left| \begin{gathered}
a + 1{\text{ }}a{\text{ }}a - 1 \\
b + 1{\text{ }} - b{\text{ }}b - 1 \\
c - 1{\text{ }}c{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
As we use ${C_1} \leftrightarrow {C_2}$in the determinant A the sign of determinant A will change
\[{\left( { - 1} \right)^n}\left( - \right)\left( - \right)\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
$ \Rightarrow $\[{\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
So, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\]
Since, \[D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\]
Therefore, \[{\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = {\left( { - 1} \right)^n}D\]
So, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = D + {\left( { - 1} \right)^n}D\]
$ \Rightarrow $\[D + {\left( { - 1} \right)^n}D = 0\]
\[ \Rightarrow D\left( {1 + {{\left( { - 1} \right)}^n}} \right) = 0\]
Now, applying the row and column transformation in$D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
${C_2} \to {C_2} - {C_3}$
$D = \left| \begin{gathered}
a{\text{ }}a + 1 - \left( {a - 1} \right){\text{ }}a - 1 \\
- b{\text{ }}b + 1 - \left( {b - 1} \right){\text{ }}b - 1 \\
c{\text{ }}c - 1 - \left( {c + 1} \right){\text{ }}c + 1 \\
\end{gathered} \right| = 0$
$ \Rightarrow $$D = \left| \begin{gathered}
a{\text{ }}2{\text{ }}a - 1 \\
- b{\text{ }}2{\text{ }}b - 1 \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
${R_1} \to {R_1} + {R_3}$, ${R_2} \to {R_2} + {R_3}$
$D = \left| \begin{gathered}
a + \left( { - b} \right){\text{ }}2 + \left( { - 2} \right){\text{ }}a - 1 + \left( {c + 1} \right) \\
- b + c{\text{ }}2 + \left( { - 2} \right){\text{ }}b - 1 + \left( {c + 1} \right) \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
$ \Rightarrow $$D = \left| \begin{gathered}
a + \left( { - b} \right){\text{ }}0{\text{ }}a + c \\
- b + c{\text{ }}0{\text{ }}b + c \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
Let’s use the formula of determinant to find the value of D i.e.
$\left| D \right| = \left| \begin{gathered}
a{\text{ }}b{\text{ }}c \\
e{\text{ }}f{\text{ }}g \\
h{\text{ }}i{\text{ }}j \\
\end{gathered} \right| = a\left( {fj - gi} \right) - b\left( {ej - gh} \right) + c\left( {ei - fh} \right)$and expanding along 2nd column
Therefore, $\left| D \right| = \left| \begin{gathered}
a + c{\text{ }}0{\text{ }}a - 1 \\
- b + c{\text{ }}0{\text{ }}b - 1 \\
{\text{ }}c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = a + c\left( {0\left( {c + 1} \right) - \left( {b + c} \right)\left( { - 2} \right)} \right) - 0\left( {\left( { - b + c} \right)\left( {c + 1} \right) - \left( {b + c} \right)\left( c \right)} \right) + \left( {a + c} \right)\left( {\left( { - b + c} \right)\left( { - 2} \right) - 0\left( c \right)} \right)$
$ \Rightarrow $$\left| D \right| = 2\left\{ {\left( {a + c} \right)\left( {b + c} \right) - \left( {a + c} \right)\left( {c - b} \right)} \right\}$
$ \Rightarrow $$\left| D \right| = 2\left( {a + c} \right)2b$
$ \Rightarrow $$\left| D \right| = 4b\left( {a + c} \right)$
$ \Rightarrow $$\left| D \right| = 4b\left( {a + c} \right) \ne 0$ as it is given that b (a + c)$ \ne $0
Therefore, \[D\left( {1 + {{\left( { - 1} \right)}^n}} \right) = 0\]
$ \Rightarrow $\[1 + {\left( { - 1} \right)^n} = 0\]
So, for the given determinant i.e. \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right|\] to be equal to 0 value of n should be any odd integer
Therefore, n = any odd integer
Hence, option C is the correct option.
Note: In the above solution we came across the term “determinant” which can be explained as the value which is obtained from the elements that exist in a square matrix. Determinant of any square matrix is represented as $\left| D \right|$there are some properties shown by the matrix such as the determinant of any square matrix remains the same when rows of the determinant are interchanged with rows to column and column to rows, when each element of row or column is zero then the determinant is zero, etc.
Complete step-by-step answer:
\[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right| = 0\]
Let \[D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\] and \[A = \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right|\]
Taking ${\left( { - 1} \right)^n}$as common for A
\[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\text{ }}a{\text{ }} - b{\text{ }}c \\
\end{gathered} \right| = 0\]
Now using the property of transpose i.e.${\left| A \right|^T} = \left| A \right|$
\[{\left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\text{ }}a{\text{ }} - b{\text{ }}c \\
\end{gathered} \right|^T} = \left| \begin{gathered}
a + 1{\text{ }}a - 1{\text{ }}a \\
b + 1{\text{ }}b - 1{\text{ }} - b \\
c - 1{\text{ }}c + 1{\text{ }}c \\
\end{gathered} \right|\]
Therefore, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a + 1{\text{ }}a - 1{\text{ }}a \\
b + 1{\text{ }}b - 1{\text{ }} - b \\
c - 1{\text{ }}c + 1{\text{ }}c \\
\end{gathered} \right| = 0\]
Now, using the rows and column transformation method in the determinant A
As we use ${C_2} \leftrightarrow {C_3}$in the determinant A the sign of determinant A will change
\[{\left( { - 1} \right)^n}\left( - \right)\left| \begin{gathered}
a + 1{\text{ }}a{\text{ }}a - 1 \\
b + 1{\text{ }} - b{\text{ }}b - 1 \\
c - 1{\text{ }}c{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
As we use ${C_1} \leftrightarrow {C_2}$in the determinant A the sign of determinant A will change
\[{\left( { - 1} \right)^n}\left( - \right)\left( - \right)\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
$ \Rightarrow $\[{\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0\]
So, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\]
Since, \[D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right|\]
Therefore, \[{\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = {\left( { - 1} \right)^n}D\]
So, \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + {\left( { - 1} \right)^n}\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = D + {\left( { - 1} \right)^n}D\]
$ \Rightarrow $\[D + {\left( { - 1} \right)^n}D = 0\]
\[ \Rightarrow D\left( {1 + {{\left( { - 1} \right)}^n}} \right) = 0\]
Now, applying the row and column transformation in$D = \left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
${C_2} \to {C_2} - {C_3}$
$D = \left| \begin{gathered}
a{\text{ }}a + 1 - \left( {a - 1} \right){\text{ }}a - 1 \\
- b{\text{ }}b + 1 - \left( {b - 1} \right){\text{ }}b - 1 \\
c{\text{ }}c - 1 - \left( {c + 1} \right){\text{ }}c + 1 \\
\end{gathered} \right| = 0$
$ \Rightarrow $$D = \left| \begin{gathered}
a{\text{ }}2{\text{ }}a - 1 \\
- b{\text{ }}2{\text{ }}b - 1 \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
${R_1} \to {R_1} + {R_3}$, ${R_2} \to {R_2} + {R_3}$
$D = \left| \begin{gathered}
a + \left( { - b} \right){\text{ }}2 + \left( { - 2} \right){\text{ }}a - 1 + \left( {c + 1} \right) \\
- b + c{\text{ }}2 + \left( { - 2} \right){\text{ }}b - 1 + \left( {c + 1} \right) \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
$ \Rightarrow $$D = \left| \begin{gathered}
a + \left( { - b} \right){\text{ }}0{\text{ }}a + c \\
- b + c{\text{ }}0{\text{ }}b + c \\
c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = 0$
Let’s use the formula of determinant to find the value of D i.e.
$\left| D \right| = \left| \begin{gathered}
a{\text{ }}b{\text{ }}c \\
e{\text{ }}f{\text{ }}g \\
h{\text{ }}i{\text{ }}j \\
\end{gathered} \right| = a\left( {fj - gi} \right) - b\left( {ej - gh} \right) + c\left( {ei - fh} \right)$and expanding along 2nd column
Therefore, $\left| D \right| = \left| \begin{gathered}
a + c{\text{ }}0{\text{ }}a - 1 \\
- b + c{\text{ }}0{\text{ }}b - 1 \\
{\text{ }}c{\text{ }} - 2{\text{ }}c + 1 \\
\end{gathered} \right| = a + c\left( {0\left( {c + 1} \right) - \left( {b + c} \right)\left( { - 2} \right)} \right) - 0\left( {\left( { - b + c} \right)\left( {c + 1} \right) - \left( {b + c} \right)\left( c \right)} \right) + \left( {a + c} \right)\left( {\left( { - b + c} \right)\left( { - 2} \right) - 0\left( c \right)} \right)$
$ \Rightarrow $$\left| D \right| = 2\left\{ {\left( {a + c} \right)\left( {b + c} \right) - \left( {a + c} \right)\left( {c - b} \right)} \right\}$
$ \Rightarrow $$\left| D \right| = 2\left( {a + c} \right)2b$
$ \Rightarrow $$\left| D \right| = 4b\left( {a + c} \right)$
$ \Rightarrow $$\left| D \right| = 4b\left( {a + c} \right) \ne 0$ as it is given that b (a + c)$ \ne $0
Therefore, \[D\left( {1 + {{\left( { - 1} \right)}^n}} \right) = 0\]
$ \Rightarrow $\[1 + {\left( { - 1} \right)^n} = 0\]
So, for the given determinant i.e. \[\left| \begin{gathered}
a{\text{ }}a + 1{\text{ }}a - 1 \\
- b{\text{ }}b + 1{\text{ }}b - 1 \\
c{\text{ }}c - 1{\text{ }}c + 1 \\
\end{gathered} \right| + \left| \begin{gathered}
a + 1{\text{ }}b + 1{\text{ }}c - 1 \\
a - 1{\text{ }}b - 1{\text{ }}c + 1 \\
{\left( { - 1} \right)^{n + 2}}a{\text{ }}{\left( { - 1} \right)^{n + 1}}b{\text{ }}{\left( { - 1} \right)^n}c \\
\end{gathered} \right|\] to be equal to 0 value of n should be any odd integer
Therefore, n = any odd integer
Hence, option C is the correct option.
Note: In the above solution we came across the term “determinant” which can be explained as the value which is obtained from the elements that exist in a square matrix. Determinant of any square matrix is represented as $\left| D \right|$there are some properties shown by the matrix such as the determinant of any square matrix remains the same when rows of the determinant are interchanged with rows to column and column to rows, when each element of row or column is zero then the determinant is zero, etc.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

