
Let A and B be two invertible matrices of order \[3\times 3.\] If \[\det \left( AB{{A}^{T}} \right)=8\] and \[\det \left( AB{{A}^{-1}} \right)=8,\] then \[\det \left( B{{A}^{-1}}{{B}^{T}} \right)\] is equal to:
\[\left( a \right)16\]
\[\left( b \right)\dfrac{1}{16}\]
\[\left( c \right)\dfrac{1}{4}\]
\[\left( d \right)1\]
Answer
587.1k+ views
Hint: We need to simplify and find the value of the determinant of A and B to get to the solution. We will use \[\det \left( AB \right)=\det \left( A \right).\det \left( B \right).\] Next, we will use \[\det \left( A \right)=\det \left( {{A}^{T}} \right)\] and lastly we will use the property \[\det \left( {{A}^{-1}} \right)=\dfrac{1}{\det \left( A \right)}\] to simplify. At last, we will get, |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] We will use them to get the value of \[\det \left( B{{A}^{-1}}{{B}^{T}} \right).\] We have that A and B are invertible matrix. As we know that \[\det \left( AB \right)=\det \left( A \right).\det \left( B \right),\] so we get,
\[\det \left( AB{{A}^{T}} \right)=\det \left( A \right).\det \left( B \right).\det \left( {{A}^{T}} \right)\]
We also have that, \[\det \left( {{A}^{T}} \right)=\det \left( A \right).\] So, using this above, we get,
\[\det \left( AB{{A}^{T}} \right)=\det A.\det B.\det A\]
\[\Rightarrow \det \left( AB{{A}^{T}} \right)={{\left| A \right|}^{2}}\left| B \right|\]
As \[\det \left( AB{{A}^{T}} \right)=8,\] so we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8.......\left( i \right)\]
Complete step by step answer:
Now we have,
\[\det \left( A{{B}^{-1}} \right)=8\]
So, \[\det \left( A{{B}^{-1}} \right)=\left| A \right|\left| {{B}^{-1}} \right|\]
As, \[\left| {{B}^{-1}} \right|=\dfrac{1}{\left| B \right|}.\]
So, \[\det \left( A{{B}^{-1}} \right)=\dfrac{\left| A \right|}{\left| B \right|}\]
As, \[\det \left( A{{B}^{-1}} \right)=8,\]so we get,
\[\dfrac{\left| A \right|}{\left| B \right|}=8......\left( ii \right)\]
Using (ii), we get,
\[\Rightarrow \left| A \right|=8\left| B \right|\]
Using this in (i), we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left( 8\left| B \right| \right)}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left| B \right|}^{3}}=\dfrac{8}{{{8}^{2}}}\]
Simplifying further, we get,
\[\Rightarrow \left| B \right|=\dfrac{1}{2}\]
Now putting \[\left| B \right|=\dfrac{1}{2}\] in \[\left| A \right|=8\left| B \right|.\] We get,
\[\left| A \right|=8\times \dfrac{1}{2}=4\]
We have |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] So, we get,
\[\det \left( B{{A}^{-1}}{{B}^{T}} \right)=\det B.\det {{A}^{-1}}.\det {{B}^{-1}}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\left| B \right|.\left| {{A}^{-1}} \right|.\left| B \right|\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{{{\left| B \right|}^{2}}}{\left| A \right|}\]
Putting the value, we get,
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)={{\left( \dfrac{1}{2} \right)}^{2}}\times \dfrac{1}{4}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{1}{16}\]
Hence, the right option is (b).
Note:
The determinants are commutative in nature. So we can say that,
\[\det \left( AB{{A}^{T}} \right)=\left| A \right|\left| B \right|\left| {{A}^{T}} \right|\]
As \[\left| A \right|=\left| {{A}^{T}} \right|.\] So, \[\left| A \right|\left| B \right|\left| A \right|.\]
As the determinant commutative, so we get,
\[\left| B \right|\left| A \right|=\left| A \right|\left| B \right|\]
So, we get,
\[=\left| A \right|\left| A \right|\left| B \right|\]
\[={{\left| A \right|}^{2}}\left| B \right|\]
This thing is not true for all multiplying matrices A with B. AB is not equal to BA always. But, \[\left| A \right|\left| B \right|=\left| B \right|\left| A \right|\] always.
\[\det \left( AB{{A}^{T}} \right)=\det \left( A \right).\det \left( B \right).\det \left( {{A}^{T}} \right)\]
We also have that, \[\det \left( {{A}^{T}} \right)=\det \left( A \right).\] So, using this above, we get,
\[\det \left( AB{{A}^{T}} \right)=\det A.\det B.\det A\]
\[\Rightarrow \det \left( AB{{A}^{T}} \right)={{\left| A \right|}^{2}}\left| B \right|\]
As \[\det \left( AB{{A}^{T}} \right)=8,\] so we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8.......\left( i \right)\]
Complete step by step answer:
Now we have,
\[\det \left( A{{B}^{-1}} \right)=8\]
So, \[\det \left( A{{B}^{-1}} \right)=\left| A \right|\left| {{B}^{-1}} \right|\]
As, \[\left| {{B}^{-1}} \right|=\dfrac{1}{\left| B \right|}.\]
So, \[\det \left( A{{B}^{-1}} \right)=\dfrac{\left| A \right|}{\left| B \right|}\]
As, \[\det \left( A{{B}^{-1}} \right)=8,\]so we get,
\[\dfrac{\left| A \right|}{\left| B \right|}=8......\left( ii \right)\]
Using (ii), we get,
\[\Rightarrow \left| A \right|=8\left| B \right|\]
Using this in (i), we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left( 8\left| B \right| \right)}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left| B \right|}^{3}}=\dfrac{8}{{{8}^{2}}}\]
Simplifying further, we get,
\[\Rightarrow \left| B \right|=\dfrac{1}{2}\]
Now putting \[\left| B \right|=\dfrac{1}{2}\] in \[\left| A \right|=8\left| B \right|.\] We get,
\[\left| A \right|=8\times \dfrac{1}{2}=4\]
We have |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] So, we get,
\[\det \left( B{{A}^{-1}}{{B}^{T}} \right)=\det B.\det {{A}^{-1}}.\det {{B}^{-1}}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\left| B \right|.\left| {{A}^{-1}} \right|.\left| B \right|\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{{{\left| B \right|}^{2}}}{\left| A \right|}\]
Putting the value, we get,
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)={{\left( \dfrac{1}{2} \right)}^{2}}\times \dfrac{1}{4}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{1}{16}\]
Hence, the right option is (b).
Note:
The determinants are commutative in nature. So we can say that,
\[\det \left( AB{{A}^{T}} \right)=\left| A \right|\left| B \right|\left| {{A}^{T}} \right|\]
As \[\left| A \right|=\left| {{A}^{T}} \right|.\] So, \[\left| A \right|\left| B \right|\left| A \right|.\]
As the determinant commutative, so we get,
\[\left| B \right|\left| A \right|=\left| A \right|\left| B \right|\]
So, we get,
\[=\left| A \right|\left| A \right|\left| B \right|\]
\[={{\left| A \right|}^{2}}\left| B \right|\]
This thing is not true for all multiplying matrices A with B. AB is not equal to BA always. But, \[\left| A \right|\left| B \right|=\left| B \right|\left| A \right|\] always.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

