
Let A and B be two invertible matrices of order \[3\times 3.\] If \[\det \left( AB{{A}^{T}} \right)=8\] and \[\det \left( AB{{A}^{-1}} \right)=8,\] then \[\det \left( B{{A}^{-1}}{{B}^{T}} \right)\] is equal to:
\[\left( a \right)16\]
\[\left( b \right)\dfrac{1}{16}\]
\[\left( c \right)\dfrac{1}{4}\]
\[\left( d \right)1\]
Answer
525.3k+ views
Hint: We need to simplify and find the value of the determinant of A and B to get to the solution. We will use \[\det \left( AB \right)=\det \left( A \right).\det \left( B \right).\] Next, we will use \[\det \left( A \right)=\det \left( {{A}^{T}} \right)\] and lastly we will use the property \[\det \left( {{A}^{-1}} \right)=\dfrac{1}{\det \left( A \right)}\] to simplify. At last, we will get, |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] We will use them to get the value of \[\det \left( B{{A}^{-1}}{{B}^{T}} \right).\] We have that A and B are invertible matrix. As we know that \[\det \left( AB \right)=\det \left( A \right).\det \left( B \right),\] so we get,
\[\det \left( AB{{A}^{T}} \right)=\det \left( A \right).\det \left( B \right).\det \left( {{A}^{T}} \right)\]
We also have that, \[\det \left( {{A}^{T}} \right)=\det \left( A \right).\] So, using this above, we get,
\[\det \left( AB{{A}^{T}} \right)=\det A.\det B.\det A\]
\[\Rightarrow \det \left( AB{{A}^{T}} \right)={{\left| A \right|}^{2}}\left| B \right|\]
As \[\det \left( AB{{A}^{T}} \right)=8,\] so we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8.......\left( i \right)\]
Complete step by step answer:
Now we have,
\[\det \left( A{{B}^{-1}} \right)=8\]
So, \[\det \left( A{{B}^{-1}} \right)=\left| A \right|\left| {{B}^{-1}} \right|\]
As, \[\left| {{B}^{-1}} \right|=\dfrac{1}{\left| B \right|}.\]
So, \[\det \left( A{{B}^{-1}} \right)=\dfrac{\left| A \right|}{\left| B \right|}\]
As, \[\det \left( A{{B}^{-1}} \right)=8,\]so we get,
\[\dfrac{\left| A \right|}{\left| B \right|}=8......\left( ii \right)\]
Using (ii), we get,
\[\Rightarrow \left| A \right|=8\left| B \right|\]
Using this in (i), we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left( 8\left| B \right| \right)}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left| B \right|}^{3}}=\dfrac{8}{{{8}^{2}}}\]
Simplifying further, we get,
\[\Rightarrow \left| B \right|=\dfrac{1}{2}\]
Now putting \[\left| B \right|=\dfrac{1}{2}\] in \[\left| A \right|=8\left| B \right|.\] We get,
\[\left| A \right|=8\times \dfrac{1}{2}=4\]
We have |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] So, we get,
\[\det \left( B{{A}^{-1}}{{B}^{T}} \right)=\det B.\det {{A}^{-1}}.\det {{B}^{-1}}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\left| B \right|.\left| {{A}^{-1}} \right|.\left| B \right|\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{{{\left| B \right|}^{2}}}{\left| A \right|}\]
Putting the value, we get,
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)={{\left( \dfrac{1}{2} \right)}^{2}}\times \dfrac{1}{4}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{1}{16}\]
Hence, the right option is (b).
Note:
The determinants are commutative in nature. So we can say that,
\[\det \left( AB{{A}^{T}} \right)=\left| A \right|\left| B \right|\left| {{A}^{T}} \right|\]
As \[\left| A \right|=\left| {{A}^{T}} \right|.\] So, \[\left| A \right|\left| B \right|\left| A \right|.\]
As the determinant commutative, so we get,
\[\left| B \right|\left| A \right|=\left| A \right|\left| B \right|\]
So, we get,
\[=\left| A \right|\left| A \right|\left| B \right|\]
\[={{\left| A \right|}^{2}}\left| B \right|\]
This thing is not true for all multiplying matrices A with B. AB is not equal to BA always. But, \[\left| A \right|\left| B \right|=\left| B \right|\left| A \right|\] always.
\[\det \left( AB{{A}^{T}} \right)=\det \left( A \right).\det \left( B \right).\det \left( {{A}^{T}} \right)\]
We also have that, \[\det \left( {{A}^{T}} \right)=\det \left( A \right).\] So, using this above, we get,
\[\det \left( AB{{A}^{T}} \right)=\det A.\det B.\det A\]
\[\Rightarrow \det \left( AB{{A}^{T}} \right)={{\left| A \right|}^{2}}\left| B \right|\]
As \[\det \left( AB{{A}^{T}} \right)=8,\] so we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8.......\left( i \right)\]
Complete step by step answer:
Now we have,
\[\det \left( A{{B}^{-1}} \right)=8\]
So, \[\det \left( A{{B}^{-1}} \right)=\left| A \right|\left| {{B}^{-1}} \right|\]
As, \[\left| {{B}^{-1}} \right|=\dfrac{1}{\left| B \right|}.\]
So, \[\det \left( A{{B}^{-1}} \right)=\dfrac{\left| A \right|}{\left| B \right|}\]
As, \[\det \left( A{{B}^{-1}} \right)=8,\]so we get,
\[\dfrac{\left| A \right|}{\left| B \right|}=8......\left( ii \right)\]
Using (ii), we get,
\[\Rightarrow \left| A \right|=8\left| B \right|\]
Using this in (i), we get,
\[\Rightarrow {{\left| A \right|}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left( 8\left| B \right| \right)}^{2}}\left| B \right|=8\]
\[\Rightarrow {{\left| B \right|}^{3}}=\dfrac{8}{{{8}^{2}}}\]
Simplifying further, we get,
\[\Rightarrow \left| B \right|=\dfrac{1}{2}\]
Now putting \[\left| B \right|=\dfrac{1}{2}\] in \[\left| A \right|=8\left| B \right|.\] We get,
\[\left| A \right|=8\times \dfrac{1}{2}=4\]
We have |A| = 4 and \[\left| B \right|=\dfrac{1}{2}.\] So, we get,
\[\det \left( B{{A}^{-1}}{{B}^{T}} \right)=\det B.\det {{A}^{-1}}.\det {{B}^{-1}}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\left| B \right|.\left| {{A}^{-1}} \right|.\left| B \right|\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{{{\left| B \right|}^{2}}}{\left| A \right|}\]
Putting the value, we get,
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)={{\left( \dfrac{1}{2} \right)}^{2}}\times \dfrac{1}{4}\]
\[\Rightarrow \det \left( B{{A}^{-1}}{{B}^{T}} \right)=\dfrac{1}{16}\]
Hence, the right option is (b).
Note:
The determinants are commutative in nature. So we can say that,
\[\det \left( AB{{A}^{T}} \right)=\left| A \right|\left| B \right|\left| {{A}^{T}} \right|\]
As \[\left| A \right|=\left| {{A}^{T}} \right|.\] So, \[\left| A \right|\left| B \right|\left| A \right|.\]
As the determinant commutative, so we get,
\[\left| B \right|\left| A \right|=\left| A \right|\left| B \right|\]
So, we get,
\[=\left| A \right|\left| A \right|\left| B \right|\]
\[={{\left| A \right|}^{2}}\left| B \right|\]
This thing is not true for all multiplying matrices A with B. AB is not equal to BA always. But, \[\left| A \right|\left| B \right|=\left| B \right|\left| A \right|\] always.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations

Choose the feminine form of the given noun Fox AFoxess class 10 english CBSE
