Answer
Verified
411.9k+ views
Hint: The given function \[f\left( x \right)\] is defined over domain A $ = \{ 12,13,14,15,16,17\} $ and we have to find the range of $f\left( x \right)$ . the function $f\left( x \right) = $ highest prime factor of $x$. Firstly, find the factor of each number present in its domain that is from $12$ to $17$, then choose the factor which is highest among all other factors of a number and grouped together which is the required range of the function $f\left( x \right)$.
Complete step-by-step answer:
Given, $f:$ A $ \to $Z be a function such that $f\left( x \right) = $ highest prime factor of $x$.
Domain A $ = \{ 12,13,14,15,16,17\} $.
Now, we have to write the prime factors of each number.
Prime factor of $12 = 2 \times 2 \times 3$
The highest prime factor of $12$ is $3$.
Prime factor of $13 = 13$
The highest prime factor of $13$ is $13$.
Prime factor of $14 = 2 \times 7$
The highest prime factor of $14$ is $7$.
Prime factor of $15 = 3 \times 5$
The highest prime factor of $15$ is $5$.
Prime factor of $16 = 2 \times 2 \times 2 \times 2$
The highest prime factor of $16$ is $2$.
Prime factor of $17 = 17$
The highest prime factor of $17$ is $17$.
So, the highest prime factor of numbers in the domain A is $\left\{ {3,13,7,5,2,17} \right\}$. Now, putting them in sequence we get,
The range of the given function $f\left( x \right)$ is $\left\{ {2,3,5,7,13,17} \right\}$.
Note:
The domain of a function is the complete set of possible values of the independent variable (usually $x$). The range of a function is the complete set of all possible resulting values of the dependent variable (usually $y$) after we have substituted the domain.
Complete step-by-step answer:
Given, $f:$ A $ \to $Z be a function such that $f\left( x \right) = $ highest prime factor of $x$.
Domain A $ = \{ 12,13,14,15,16,17\} $.
Now, we have to write the prime factors of each number.
Prime factor of $12 = 2 \times 2 \times 3$
The highest prime factor of $12$ is $3$.
Prime factor of $13 = 13$
The highest prime factor of $13$ is $13$.
Prime factor of $14 = 2 \times 7$
The highest prime factor of $14$ is $7$.
Prime factor of $15 = 3 \times 5$
The highest prime factor of $15$ is $5$.
Prime factor of $16 = 2 \times 2 \times 2 \times 2$
The highest prime factor of $16$ is $2$.
Prime factor of $17 = 17$
The highest prime factor of $17$ is $17$.
So, the highest prime factor of numbers in the domain A is $\left\{ {3,13,7,5,2,17} \right\}$. Now, putting them in sequence we get,
The range of the given function $f\left( x \right)$ is $\left\{ {2,3,5,7,13,17} \right\}$.
Note:
The domain of a function is the complete set of possible values of the independent variable (usually $x$). The range of a function is the complete set of all possible resulting values of the dependent variable (usually $y$) after we have substituted the domain.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE