
: What is the length of the diagonal of the square whose area is 16900 square metres
[a] 130m
[b] $130\sqrt{2}m$
[c] 169m
[d] 144m
Answer
599.1k+ views
Hint: Assume that the side of the square is “a” metres. Use the fact that the area of the square of side length a is given by $A={{a}^{2}}$. Equate this area to 16900 and hence form an equation in a. Use the fact that the length of the diagonal of a square of side length a is $a\sqrt{2}$. Hence find the length of the diagonal of the square. Alternatively, use the fact that if d is the length of the diagonal of a square, then the area of the square is given by $A=\dfrac{1}{2}{{d}^{2}}$. Hence form an equation in d. Solve for d and hence find the length of the diagonal of the square.
Complete step-by-step answer:
Given: ABCD is a square. The area of ABCD is equal to 16900 square metres.
To find: The length of the diagonal AC.
Let the length of the side AB of the square be x.
We know that the area of the square of side length a is given by $A={{a}^{2}}$
Hence, we have
$ar\left( ABCD \right)={{x}^{2}}$
Given that ar(ABCD) = 16900
Hence, we have
${{x}^{2}}=16900\Rightarrow x=\sqrt{16900}=130$
Hence the length of the side of the square is 130 metres.
We know that by Pythagora’s theorem, the square of the hypotenuse is equal to the sum of the square of its sides.
Applying Pythagora’s theorem in triangle ABC, we get
$A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}}$
Hence, we have
$A{{C}^{2}}={{130}^{2}}+{{130}^{2}}=2\times {{130}^{2}}$
Hence, we have
$AC=130\sqrt{2}$ metres.
Hence the length of the diagonal of the square is equal to $130\sqrt{2}$ metres.
Hence option [b] is correct.
Note: Alternative solution:
We know that if d is the length of the diagonal of a square, then the area of the square is given by $A=\dfrac{1}{2}{{d}^{2}}$.
Let the length of the diagonal of the square be d.
Hence, we have
$\begin{align}
& \dfrac{1}{2}{{d}^{2}}=16900 \\
& \Rightarrow {{d}^{2}}=2\times 16900 \\
& \Rightarrow d=130\sqrt{2} \\
\end{align}$
Hence the length of the diagonal of the square is $130\sqrt{2}$ metres, which is the same as obtained above.
Hence option [b] is correct.
Complete step-by-step answer:
Given: ABCD is a square. The area of ABCD is equal to 16900 square metres.
To find: The length of the diagonal AC.
Let the length of the side AB of the square be x.
We know that the area of the square of side length a is given by $A={{a}^{2}}$
Hence, we have
$ar\left( ABCD \right)={{x}^{2}}$
Given that ar(ABCD) = 16900
Hence, we have
${{x}^{2}}=16900\Rightarrow x=\sqrt{16900}=130$
Hence the length of the side of the square is 130 metres.
We know that by Pythagora’s theorem, the square of the hypotenuse is equal to the sum of the square of its sides.
Applying Pythagora’s theorem in triangle ABC, we get
$A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}}$
Hence, we have
$A{{C}^{2}}={{130}^{2}}+{{130}^{2}}=2\times {{130}^{2}}$
Hence, we have
$AC=130\sqrt{2}$ metres.
Hence the length of the diagonal of the square is equal to $130\sqrt{2}$ metres.
Hence option [b] is correct.
Note: Alternative solution:
We know that if d is the length of the diagonal of a square, then the area of the square is given by $A=\dfrac{1}{2}{{d}^{2}}$.
Let the length of the diagonal of the square be d.
Hence, we have
$\begin{align}
& \dfrac{1}{2}{{d}^{2}}=16900 \\
& \Rightarrow {{d}^{2}}=2\times 16900 \\
& \Rightarrow d=130\sqrt{2} \\
\end{align}$
Hence the length of the diagonal of the square is $130\sqrt{2}$ metres, which is the same as obtained above.
Hence option [b] is correct.
Recently Updated Pages
The stick and ball games played in England some 500 class 9 social science CBSE

The curved surface area of a frustum cone is 25pi mm2 class 9 maths CBSE

The cost of painting the curved surface area of a cone class 9 maths CBSE

Prove that the equation x2 + px 1 0 has real and distinct class 9 maths CBSE

What is the name of a parallelogram with all sides class 9 maths CBSE

If a b are coprime then a2b2 are a Coprime b Not coprime class 9 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

