
Length of barrel of a gun is l=5.0m and mass of the shell is ${{m}_{0}}=45\text{kg}$. During firing, combustion of the gunpowder takes place at a constant rate $r=2.0\times {{10}^{3}}\,\dfrac{\text{kg}}{\text{s}}$ , the gun-powder is completely transformed into gas of average molar mass $5.0\times {{10}^{-2}}\ \dfrac{\text{kg}}{\text{mol}}$ , temperature T = 1000 K of the gases remains fairly constant and displacement of the shell inside the barrel is proportional to ${{t}^{a}}$ (t is time and a is a constant). Neglecting all forces other than force of the propellant gas during firing, find the muzzle velocity of the shell.
Answer
587.4k+ views
Hint: The internal energy for the monatomic gas is given as:
$\Rightarrow U=\dfrac{3}{2}nRT$
Where, n is the number of the moles of gas, R is the gas constant and T is the temperature.
Complete step-by-step answer:
Given:
Length of the barrel, l = 5.0 m
Mass of the shell, ${{m}_{0}}=45\text{kg}$
Combustion rate, $r=2.0\times {{10}^{3}}\,\dfrac{\text{kg}}{\text{s}}$
Average molar mass, $5.0\times {{10}^{-2}}\ \dfrac{\text{kg}}{\text{mol}}$
Temperature T = 1000 K
Calculation:
The combustion rate is given in the question,
So, the Mass of the powder burnt at time dt is given as,
$\begin{align}
& \Rightarrow n=\dfrac{r}{M}dt \\
& \Rightarrow n=\dfrac{2.0\times {{10}^{3}}}{5.0\times {{10}^{-2}}}dt \\
& \Rightarrow n=0.4\times {{10}^{5}}\times dt\ \text{mole} \\
\end{align}$
The energy of the monatomic gas is given as:
$\begin{align}
& \Rightarrow U=\dfrac{3}{2}nRT \\
& \Rightarrow U=\dfrac{3}{2}\times 0.4\times {{10}^{5}}dt\times 1000\times 8.314 \\
& \Rightarrow U=4.98\times {{10}^{8}}\ dt\ J \\
\end{align}$ … (1)
Now, displacement of the shell inside the barrel is proportional to
$\begin{align}
& \Rightarrow x\propto {{t}^{a}} \\
& \Rightarrow x=k{{t}^{a}} \\
& \Rightarrow \dfrac{x}{dx}=\dfrac{t}{adt} \\
& \Rightarrow \dfrac{dx}{x}=\dfrac{tdx}{ax} \\
& \Rightarrow dt=\dfrac{tdx}{ax} \\
\end{align}$
Multiplying both side of equation by we get,
$\Rightarrow 4.98\times {{10}^{8}}\times dt=\dfrac{4.98\times {{10}^{8}}\times tdx}{ax}$ … (2)
Comparing equation (1) and (2):
The total energy transferred is given by,
$\begin{align}
& \Rightarrow E=\int\limits_{0}^{5}{\dfrac{4.98\times {{10}^{8}}tdx}{ax}} \\
& \Rightarrow E=\int\limits_{0}^{5}{\dfrac{4.98\times {{10}^{8}}tdx}{5a}} \\
\end{align}$
This energy is balanced by the kinetic energy. So,
$\begin{align}
& \Rightarrow \dfrac{1}{2}m{{v}^{2}}=\dfrac{4.98\times {{10}^{8}}tdx}{5a} \\
& \Rightarrow v=\sqrt{\dfrac{2\times 4.98\times {{10}^{8}}tdx}{5am}} \\
& \Rightarrow v=\sqrt{\dfrac{4.98\times {{10}^{8}}tdx}{45\times 5\times a}} \\
& \Rightarrow v=0.47\times {{10}^{4}}\sqrt{\dfrac{t}{a}} \\
\end{align}$
Note: The energy of the gas is balanced by the kinetic energy of the shell because the process of the combustion of the gas takes place only when the shell is fired. This combustion of gas converts the gunpowder in the gas.
$\Rightarrow U=\dfrac{3}{2}nRT$
Where, n is the number of the moles of gas, R is the gas constant and T is the temperature.
Complete step-by-step answer:
Given:
Length of the barrel, l = 5.0 m
Mass of the shell, ${{m}_{0}}=45\text{kg}$
Combustion rate, $r=2.0\times {{10}^{3}}\,\dfrac{\text{kg}}{\text{s}}$
Average molar mass, $5.0\times {{10}^{-2}}\ \dfrac{\text{kg}}{\text{mol}}$
Temperature T = 1000 K
Calculation:
The combustion rate is given in the question,
So, the Mass of the powder burnt at time dt is given as,
$\begin{align}
& \Rightarrow n=\dfrac{r}{M}dt \\
& \Rightarrow n=\dfrac{2.0\times {{10}^{3}}}{5.0\times {{10}^{-2}}}dt \\
& \Rightarrow n=0.4\times {{10}^{5}}\times dt\ \text{mole} \\
\end{align}$
The energy of the monatomic gas is given as:
$\begin{align}
& \Rightarrow U=\dfrac{3}{2}nRT \\
& \Rightarrow U=\dfrac{3}{2}\times 0.4\times {{10}^{5}}dt\times 1000\times 8.314 \\
& \Rightarrow U=4.98\times {{10}^{8}}\ dt\ J \\
\end{align}$ … (1)
Now, displacement of the shell inside the barrel is proportional to
$\begin{align}
& \Rightarrow x\propto {{t}^{a}} \\
& \Rightarrow x=k{{t}^{a}} \\
& \Rightarrow \dfrac{x}{dx}=\dfrac{t}{adt} \\
& \Rightarrow \dfrac{dx}{x}=\dfrac{tdx}{ax} \\
& \Rightarrow dt=\dfrac{tdx}{ax} \\
\end{align}$
Multiplying both side of equation by we get,
$\Rightarrow 4.98\times {{10}^{8}}\times dt=\dfrac{4.98\times {{10}^{8}}\times tdx}{ax}$ … (2)
Comparing equation (1) and (2):
The total energy transferred is given by,
$\begin{align}
& \Rightarrow E=\int\limits_{0}^{5}{\dfrac{4.98\times {{10}^{8}}tdx}{ax}} \\
& \Rightarrow E=\int\limits_{0}^{5}{\dfrac{4.98\times {{10}^{8}}tdx}{5a}} \\
\end{align}$
This energy is balanced by the kinetic energy. So,
$\begin{align}
& \Rightarrow \dfrac{1}{2}m{{v}^{2}}=\dfrac{4.98\times {{10}^{8}}tdx}{5a} \\
& \Rightarrow v=\sqrt{\dfrac{2\times 4.98\times {{10}^{8}}tdx}{5am}} \\
& \Rightarrow v=\sqrt{\dfrac{4.98\times {{10}^{8}}tdx}{45\times 5\times a}} \\
& \Rightarrow v=0.47\times {{10}^{4}}\sqrt{\dfrac{t}{a}} \\
\end{align}$
Note: The energy of the gas is balanced by the kinetic energy of the shell because the process of the combustion of the gas takes place only when the shell is fired. This combustion of gas converts the gunpowder in the gas.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

