
$$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K$$, then the value of K is
A. $\sqrt {1 + {{\cos }^2}\alpha } $
B. $\sqrt {1 + {{\sin }^2}\alpha } $
C. $\sqrt {2 + {{\sin }^2}\alpha } $
D. $\sqrt {2 + {{\cos }^2}\alpha } $
Answer
594k+ views
Hint: We need to find the maximum of the value. For that first we are going to solve$$\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\} $$and then we can determine using the discriminant by forming a quadratic equation. On solving the value of${b^2} - 4ac \geqslant 0$, we will be able to find the K value in$$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K$$.
Complete step-by-step answer:
Given $$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K $$
A modulus function is a function which gives the absolute value of a number or variable. The plotting of such graphs is also an easy method where the domain will be all values of input say x (all real numbers) and range will be values of function (y= f(x) = all positive real numbers and 0).
We need to find the maximum of the above given equation.
Let u=$$\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\} $$
We say that a function f(x) has a relative maximum value at x = a, if f(a) is greater than any value immediately preceding or following. We call it a “relative” maximum because other values of the function may in fact be greater.
$ \Rightarrow u = \cos \theta sin\theta + \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } $
$ \Rightarrow u - \cos \theta sin\theta = \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } $
Squaring on both sides
$ \Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = \left( {\cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right){ ^2}$
$ \Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\sin }^2}\alpha } \right)$
$ \Rightarrow {u^2} + {\sin ^2}\theta {\cos ^2}\theta - 2u\sin \theta \cos \theta = {\cos ^2}\theta si{n^2}\theta + {\cos ^2}\theta {\sin ^2}\alpha $
$ \Rightarrow {u^2} - 2u\sin \theta \cos \theta = {\cos ^2}\theta {\sin ^2}\alpha $
Divide the entire equation on both sides with${\cos ^2}\theta $
$ \Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} = \dfrac{{{{\cos }^2}\theta {{\sin }^2}\alpha }}{{{{\cos }^2}\theta }}$
$ \Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta }}{{\cos \theta }} = si{n^2}\alpha $
$$ \Rightarrow {u^2}{\sec ^2}\theta - 2u\tan \theta = si{n^2}\alpha $$
We know that${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$$ \Rightarrow {u^2}\left( {1 + {{\tan }^2}\theta } \right) - 2u\tan \theta = si{n^2}\alpha $$
$$ \Rightarrow {u^2} + {u^2}{\tan ^2}\theta - 2u\tan \theta - si{n^2}\alpha = 0$$
We can rewrite this equation as
$$ \Rightarrow {u^2}{\tan ^2}\theta - 2u\tan \theta + {u^2} - si{n^2}\alpha = 0$$
Here $$\tan \theta $$ is real
Considering the above one as equation and comparing it with$a{x^2} + bx + c = 0$
Therefore, a= $${u^2}$$
And b= $$ - 2u$$
And c= $${u^2} - si{n^2}\alpha $$
Quadratic formula: x=$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. When the Discriminant ${b^2} - 4ac$is: positive, there are 2 real solutions.
We know that $D \geqslant 0$
${b^2} - 4ac \geqslant 0$
$$ \Rightarrow {\left( { - 2u} \right)^2} - 4 \times {u^2} \times \left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0 $$
$$ \Rightarrow 4{u^2} - 4{u^2}\left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0$$
$$ \Rightarrow 4{u^2}\left( {1 - {u^2} + si{n^2}\alpha } \right) \geqslant 0$$
$$ \Rightarrow 1 - {u^2} + si{n^2}\alpha \geqslant 0$$
$$ \Rightarrow {u^2} \leqslant 1 + si{n^2}\alpha $$
Therefore, $$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant \sqrt {1 + si{n^2}\alpha } $$
Note: We can solve the above problem using Cauchy Schwarz Inequality. It is also Cauchy-Bunyakovsky-Schwarz inequality, a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. Therefore, on using this inequality, we get$({\sin ^2}x + {\cos ^2}x).\left[ {{{\cos }^2}x + {{\sin }^2}x + {{\sin }^2}\alpha } \right]$$ \geqslant {\left( {\sin x.\cos x + \cos x.\sqrt {{{\sin }^2}x + {{\sin }^2}\alpha } } \right)^2}$. So we get${y^2} \leqslant \left( {1 + {{\sin }^2}\alpha } \right) \Rightarrow \left| y \right| \leqslant \sqrt {1 + {{\sin }^2}\alpha } $.
Complete step-by-step answer:
Given $$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K $$
A modulus function is a function which gives the absolute value of a number or variable. The plotting of such graphs is also an easy method where the domain will be all values of input say x (all real numbers) and range will be values of function (y= f(x) = all positive real numbers and 0).
We need to find the maximum of the above given equation.
Let u=$$\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\} $$
We say that a function f(x) has a relative maximum value at x = a, if f(a) is greater than any value immediately preceding or following. We call it a “relative” maximum because other values of the function may in fact be greater.
$ \Rightarrow u = \cos \theta sin\theta + \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } $
$ \Rightarrow u - \cos \theta sin\theta = \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } $
Squaring on both sides
$ \Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = \left( {\cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right){ ^2}$
$ \Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\sin }^2}\alpha } \right)$
$ \Rightarrow {u^2} + {\sin ^2}\theta {\cos ^2}\theta - 2u\sin \theta \cos \theta = {\cos ^2}\theta si{n^2}\theta + {\cos ^2}\theta {\sin ^2}\alpha $
$ \Rightarrow {u^2} - 2u\sin \theta \cos \theta = {\cos ^2}\theta {\sin ^2}\alpha $
Divide the entire equation on both sides with${\cos ^2}\theta $
$ \Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} = \dfrac{{{{\cos }^2}\theta {{\sin }^2}\alpha }}{{{{\cos }^2}\theta }}$
$ \Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta }}{{\cos \theta }} = si{n^2}\alpha $
$$ \Rightarrow {u^2}{\sec ^2}\theta - 2u\tan \theta = si{n^2}\alpha $$
We know that${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$$ \Rightarrow {u^2}\left( {1 + {{\tan }^2}\theta } \right) - 2u\tan \theta = si{n^2}\alpha $$
$$ \Rightarrow {u^2} + {u^2}{\tan ^2}\theta - 2u\tan \theta - si{n^2}\alpha = 0$$
We can rewrite this equation as
$$ \Rightarrow {u^2}{\tan ^2}\theta - 2u\tan \theta + {u^2} - si{n^2}\alpha = 0$$
Here $$\tan \theta $$ is real
Considering the above one as equation and comparing it with$a{x^2} + bx + c = 0$
Therefore, a= $${u^2}$$
And b= $$ - 2u$$
And c= $${u^2} - si{n^2}\alpha $$
Quadratic formula: x=$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. When the Discriminant ${b^2} - 4ac$is: positive, there are 2 real solutions.
We know that $D \geqslant 0$
${b^2} - 4ac \geqslant 0$
$$ \Rightarrow {\left( { - 2u} \right)^2} - 4 \times {u^2} \times \left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0 $$
$$ \Rightarrow 4{u^2} - 4{u^2}\left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0$$
$$ \Rightarrow 4{u^2}\left( {1 - {u^2} + si{n^2}\alpha } \right) \geqslant 0$$
$$ \Rightarrow 1 - {u^2} + si{n^2}\alpha \geqslant 0$$
$$ \Rightarrow {u^2} \leqslant 1 + si{n^2}\alpha $$
Therefore, $$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant \sqrt {1 + si{n^2}\alpha } $$
Note: We can solve the above problem using Cauchy Schwarz Inequality. It is also Cauchy-Bunyakovsky-Schwarz inequality, a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. Therefore, on using this inequality, we get$({\sin ^2}x + {\cos ^2}x).\left[ {{{\cos }^2}x + {{\sin }^2}x + {{\sin }^2}\alpha } \right]$$ \geqslant {\left( {\sin x.\cos x + \cos x.\sqrt {{{\sin }^2}x + {{\sin }^2}\alpha } } \right)^2}$. So we get${y^2} \leqslant \left( {1 + {{\sin }^2}\alpha } \right) \Rightarrow \left| y \right| \leqslant \sqrt {1 + {{\sin }^2}\alpha } $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

