   Question Answers

# $\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K$, then the value of K isA. $\sqrt {1 + {{\cos }^2}\alpha }$B. $\sqrt {1 + {{\sin }^2}\alpha }$C. $\sqrt {2 + {{\sin }^2}\alpha }$D. $\sqrt {2 + {{\cos }^2}\alpha }$  Hint: We need to find the maximum of the value. For that first we are going to solve$\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}$and then we can determine using the discriminant by forming a quadratic equation. On solving the value of${b^2} - 4ac \geqslant 0$, we will be able to find the K value in$\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K$.

Given $\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant K$
A modulus function is a function which gives the absolute value of a number or variable. The plotting of such graphs is also an easy method where the domain will be all values of input say x (all real numbers) and range will be values of function (y= f(x) = all positive real numbers and 0).
We need to find the maximum of the above given equation.
Let u=$\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}$
We say that a function f(x) has a relative maximum value at x = a, if f(a) is greater than any value immediately preceding or following. We call it a “relative” maximum because other values of the function may in fact be greater.
$\Rightarrow u = \cos \theta sin\theta + \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha }$
$\Rightarrow u - \cos \theta sin\theta = \cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha }$
Squaring on both sides
$\Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = \left( {\cos \theta \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right){ ^2}$
$\Rightarrow {\left( {u - \cos \theta sin\theta } \right)^2} = {\cos ^2}\theta \left( {{{\sin }^2}\theta + {{\sin }^2}\alpha } \right)$
$\Rightarrow {u^2} + {\sin ^2}\theta {\cos ^2}\theta - 2u\sin \theta \cos \theta = {\cos ^2}\theta si{n^2}\theta + {\cos ^2}\theta {\sin ^2}\alpha$
$\Rightarrow {u^2} - 2u\sin \theta \cos \theta = {\cos ^2}\theta {\sin ^2}\alpha$
Divide the entire equation on both sides with${\cos ^2}\theta$
$\Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} = \dfrac{{{{\cos }^2}\theta {{\sin }^2}\alpha }}{{{{\cos }^2}\theta }}$
$\Rightarrow \dfrac{{{u^2}}}{{{{\cos }^2}\theta }} - \dfrac{{2u\sin \theta }}{{\cos \theta }} = si{n^2}\alpha$
$\Rightarrow {u^2}{\sec ^2}\theta - 2u\tan \theta = si{n^2}\alpha$
We know that${\sec ^2}\theta = 1 + {\tan ^2}\theta$
$\Rightarrow {u^2}\left( {1 + {{\tan }^2}\theta } \right) - 2u\tan \theta = si{n^2}\alpha$
$\Rightarrow {u^2} + {u^2}{\tan ^2}\theta - 2u\tan \theta - si{n^2}\alpha = 0$
We can rewrite this equation as
$\Rightarrow {u^2}{\tan ^2}\theta - 2u\tan \theta + {u^2} - si{n^2}\alpha = 0$
Here $\tan \theta$ is real
Considering the above one as equation and comparing it with$a{x^2} + bx + c = 0$
Therefore, a= ${u^2}$
And b= $- 2u$
And c= ${u^2} - si{n^2}\alpha$
Quadratic formula: x=$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. When the Discriminant ${b^2} - 4ac$is: positive, there are 2 real solutions.
We know that $D \geqslant 0$
${b^2} - 4ac \geqslant 0$
$\Rightarrow {\left( { - 2u} \right)^2} - 4 \times {u^2} \times \left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0$
$\Rightarrow 4{u^2} - 4{u^2}\left( {{u^2} - si{n^2}\alpha } \right) \geqslant 0$
$\Rightarrow 4{u^2}\left( {1 - {u^2} + si{n^2}\alpha } \right) \geqslant 0$
$\Rightarrow 1 - {u^2} + si{n^2}\alpha \geqslant 0$
$\Rightarrow {u^2} \leqslant 1 + si{n^2}\alpha$

Therefore, $\left| {\cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}} \right| \leqslant \sqrt {1 + si{n^2}\alpha }$

Note: We can solve the above problem using Cauchy Schwarz Inequality. It is also Cauchy-Bunyakovsky-Schwarz inequality, a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. Therefore, on using this inequality, we get$({\sin ^2}x + {\cos ^2}x).\left[ {{{\cos }^2}x + {{\sin }^2}x + {{\sin }^2}\alpha } \right]$$\geqslant {\left( {\sin x.\cos x + \cos x.\sqrt {{{\sin }^2}x + {{\sin }^2}\alpha } } \right)^2}$. So we get${y^2} \leqslant \left( {1 + {{\sin }^2}\alpha } \right) \Rightarrow \left| y \right| \leqslant \sqrt {1 + {{\sin }^2}\alpha }$.

Sin Cos Formula  Sin 120  Value of Sin 180  Difference Between Left and Right Ventricle  Difference Between Left Kidney and Right Kidney  Cos 360  Value of Cos 120  CBSE Class 11 Maths Formulas  Trigonometry Table  CBSE Class 6 Maths Chapter 11 - Algebra Formulas  Important Questions for CBSE Class 11 Maths  Important Questions for CBSE Class 11 Maths Chapter 11 - Conic Sections  Important Questions for CBSE Class 11 Maths Chapter 15 - Statistics  Important Questions for CBSE Class 10 Maths Chapter 11 - Constructions  Important Questions for CBSE Class 9 Maths Chapter 11 - Constructions  Important Questions for CBSE Class 11 Maths Chapter 1 - Sets  Important Questions for CBSE Class 8 Maths Chapter 11 - Mensuration  Important Questions for CBSE Class 6 Maths Chapter 11 - Algebra  Important Questions for CBSE Class 11 Maths Chapter 6 - Linear Inequalities  Important Questions for CBSE Class 11 Maths Chapter 10 - Straight Lines  CBSE Class 12 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2017  Maths Question Paper for CBSE Class 10 - 2011  Maths Question Paper for CBSE Class 10 - 2008  Maths Question Paper for CBSE Class 10 - 2012  Maths Question Paper for CBSE Class 10 - 2009  Maths Question Paper for CBSE Class 10 - 2010  Maths Question Paper for CBSE Class 10 - 2007  Maths Question Paper for CBSE Class 12 - 2013  NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry  NCERT Solutions for Class 10 Maths Chapter 9 Some Applications of Trigonometry  NCERT Solutions for Class 11 Maths Chapter 11  RD Sharma Class 11 Mathematics Solutions  RD Sharma Class 11 Maths Solutions Chapter 11 - Trigonometric Equations  NCERT Solutions for Class 11 Maths  NCERT Solutions for Class 11 Maths  RD Sharma Solutions for Class 10 Maths Chapter 12 - Some Applications of Trigonometry  NCERT Exemplar for Class 11 Maths Chapter 11 - Conic Sections (Book Solutions)  NCERT Solutions for Class 11 Maths Chapter 11 Conic Sections in Hindi  