
$\left( a \right)$ If the roots of the equation, $\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0$ be equal, then prove that a, b, c are in arithmetic progression.
$\left( b \right)$ If $a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right) = 0$ has equal roots, prove that a, b, c are in harmonic progression.
Answer
579.6k+ views
Hint: In this particular question use the concept that if a quadratic equation has equal roots then the value of discriminant D must be zero i.e. $D = {B^2} - 4AC = 0$, and use the concept that if a, b, and C are in A.P then it must satisfies the condition, 2b = a + c and if a, b, and C are in H.P then it must satisfies the condition, $\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
$\left( a \right)$ If the roots of the equation, $\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0$ be equal, then prove that a, b, c are in arithmetic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. $D = {B^2} - 4AC = 0$.
Where, A = b – c, B = c – a, and C = a – b.
Now substitute the values we have,
$ \Rightarrow D = {\left( {c - a} \right)^2} - 4\left( {b - c} \right)\left( {a - b} \right) = 0$
Now simplify using the property that ${\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy$ so we have,
$ \Rightarrow {c^2} + {a^2} - 2ac - 4ab + 4{b^2} + 4ac - 4bc = 0$
$ \Rightarrow {c^2} + {a^2} + 2ac - 4ab + 4{b^2} - 4bc = 0$
$ \Rightarrow {\left( {a + c} \right)^2} + 4{b^2} - 4b\left( {a + c} \right) = 0$, $\left[ {\because {c^2} + {a^2} + 2ac = {{\left( {a + c} \right)}^2}} \right]$
So it is the formula of ${\left( {x - y} \right)^2}$, where x = a + c and y = 2b
$ \Rightarrow {\left[ {\left( {a + c} \right) - 2b} \right]^2} = 0$
$ \Rightarrow a + c - 2b = 0$
$ \Rightarrow 2b = a + c$
Hence a, b, and c are in Arithmetic progression.
Hence proved.
$\left( b \right)$ If $a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right) = 0$ has equal roots, prove that a, b, c are in harmonic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. $D = {B^2} - 4AC = 0$.
Where, A = a(b – c), B = b(c – a), and C = c(a – b).
Now substitute the values we have,
$ \Rightarrow D = {b^2}{\left( {c - a} \right)^2} - 4ac\left( {b - c} \right)\left( {a - b} \right) = 0$
Now simplify using the property that ${\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy$ so we have,
\[ \Rightarrow {b^2}\left( {{c^2} + {a^2} - 2ac} \right) - 4ac\left( {ab - {b^2} - ac + bc} \right) = 0\]
\[ \Rightarrow {b^2}{c^2} + {b^2}{a^2} - 2a{b^2}c - 4{a^2}bc + 4a{b^2}c + 4{a^2}{c^2} - 4ab{c^2} = 0\]
\[ \Rightarrow {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c - 4{a^2}bc + 4{a^2}{c^2} - 4ab{c^2} = 0\]
\[ \Rightarrow {\left( {ab + bc} \right)^2} + 4{a^2}{c^2} - 4ac\left( {ab + bc} \right) = 0\], $\left[ {\because {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c = {{\left( {ab + bc} \right)}^2}} \right]$
So it is the formula of ${\left( {x - y} \right)^2}$, where x = ab + bc and y = 2ac
\[ \Rightarrow {\left[ {\left( {ab + bc} \right) - 2ac} \right]^2} = 0\]
\[ \Rightarrow \left( {ab + bc} \right) - 2ac = 0\]
\[ \Rightarrow 2ac = ab + bc\]
Now divide by abc throughout we have,
\[ \Rightarrow \dfrac{{2ac}}{{abc}} = \dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}}\]
\[ \Rightarrow \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{a}\]
Hence a, b, and c are in Harmonic progression.
Hence proved.
Note: We can also prove the conditions using the property that in a quadratic equation the sum of the roots is the ratio of the negative times the coefficient of x to the coefficient of ${x^2}$, and the product of the roots is the ratio of the constant term to the coefficient of ${x^2}$, as the roots are equal so we can easily eliminate the variable, for example in $\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0$ let the roots be p and p.
So, the sum of the roots, p + p = $\dfrac{{ - \left( {c - a} \right)}}{{b - c}}$, therefore, 2p = $\dfrac{{ - \left( {c - a} \right)}}{{b - c}}$, and the product of the roots, ${p^2} = \dfrac{{a - b}}{{b - c}}$. So we can easily eliminate the variable p, by substituting $p = \dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}}$ in second equation so we have, $\left[ {{{\left( {\dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}}} \right)}^2} = \dfrac{{a - b}}{{b - c}}} \right]$, $ \Rightarrow \dfrac{{{{\left( {c - a} \right)}^2}}}{{4\left( {b - c} \right)}} = a - b$, rest of the solution remains the same.
Complete step-by-step answer:
$\left( a \right)$ If the roots of the equation, $\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0$ be equal, then prove that a, b, c are in arithmetic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. $D = {B^2} - 4AC = 0$.
Where, A = b – c, B = c – a, and C = a – b.
Now substitute the values we have,
$ \Rightarrow D = {\left( {c - a} \right)^2} - 4\left( {b - c} \right)\left( {a - b} \right) = 0$
Now simplify using the property that ${\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy$ so we have,
$ \Rightarrow {c^2} + {a^2} - 2ac - 4ab + 4{b^2} + 4ac - 4bc = 0$
$ \Rightarrow {c^2} + {a^2} + 2ac - 4ab + 4{b^2} - 4bc = 0$
$ \Rightarrow {\left( {a + c} \right)^2} + 4{b^2} - 4b\left( {a + c} \right) = 0$, $\left[ {\because {c^2} + {a^2} + 2ac = {{\left( {a + c} \right)}^2}} \right]$
So it is the formula of ${\left( {x - y} \right)^2}$, where x = a + c and y = 2b
$ \Rightarrow {\left[ {\left( {a + c} \right) - 2b} \right]^2} = 0$
$ \Rightarrow a + c - 2b = 0$
$ \Rightarrow 2b = a + c$
Hence a, b, and c are in Arithmetic progression.
Hence proved.
$\left( b \right)$ If $a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right) = 0$ has equal roots, prove that a, b, c are in harmonic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. $D = {B^2} - 4AC = 0$.
Where, A = a(b – c), B = b(c – a), and C = c(a – b).
Now substitute the values we have,
$ \Rightarrow D = {b^2}{\left( {c - a} \right)^2} - 4ac\left( {b - c} \right)\left( {a - b} \right) = 0$
Now simplify using the property that ${\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy$ so we have,
\[ \Rightarrow {b^2}\left( {{c^2} + {a^2} - 2ac} \right) - 4ac\left( {ab - {b^2} - ac + bc} \right) = 0\]
\[ \Rightarrow {b^2}{c^2} + {b^2}{a^2} - 2a{b^2}c - 4{a^2}bc + 4a{b^2}c + 4{a^2}{c^2} - 4ab{c^2} = 0\]
\[ \Rightarrow {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c - 4{a^2}bc + 4{a^2}{c^2} - 4ab{c^2} = 0\]
\[ \Rightarrow {\left( {ab + bc} \right)^2} + 4{a^2}{c^2} - 4ac\left( {ab + bc} \right) = 0\], $\left[ {\because {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c = {{\left( {ab + bc} \right)}^2}} \right]$
So it is the formula of ${\left( {x - y} \right)^2}$, where x = ab + bc and y = 2ac
\[ \Rightarrow {\left[ {\left( {ab + bc} \right) - 2ac} \right]^2} = 0\]
\[ \Rightarrow \left( {ab + bc} \right) - 2ac = 0\]
\[ \Rightarrow 2ac = ab + bc\]
Now divide by abc throughout we have,
\[ \Rightarrow \dfrac{{2ac}}{{abc}} = \dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}}\]
\[ \Rightarrow \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{a}\]
Hence a, b, and c are in Harmonic progression.
Hence proved.
Note: We can also prove the conditions using the property that in a quadratic equation the sum of the roots is the ratio of the negative times the coefficient of x to the coefficient of ${x^2}$, and the product of the roots is the ratio of the constant term to the coefficient of ${x^2}$, as the roots are equal so we can easily eliminate the variable, for example in $\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0$ let the roots be p and p.
So, the sum of the roots, p + p = $\dfrac{{ - \left( {c - a} \right)}}{{b - c}}$, therefore, 2p = $\dfrac{{ - \left( {c - a} \right)}}{{b - c}}$, and the product of the roots, ${p^2} = \dfrac{{a - b}}{{b - c}}$. So we can easily eliminate the variable p, by substituting $p = \dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}}$ in second equation so we have, $\left[ {{{\left( {\dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}}} \right)}^2} = \dfrac{{a - b}}{{b - c}}} \right]$, $ \Rightarrow \dfrac{{{{\left( {c - a} \right)}^2}}}{{4\left( {b - c} \right)}} = a - b$, rest of the solution remains the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

