
LCM of 8, 16, 24 and 32 is
A. 96
B. 72
C. 108
D. 128
Answer
576k+ views
Hint:Here they have provided four numbers. Thus we need to find the least number which is a multiple of all these four numbers. As all the given numbers have common factors, we will go for the prime factorization of these. Thus LCM will be the product of each of the distinct prime factors with its greatest number of occurrence times.
Complete step-by-step answer:
Least common multiple (LCM) of numbers a, b is defined to be the least number which is a multiple of both a and b.
Let us prime factorize each of the numbers.
$8 = 2 \times 2 \times 2$
The next number,
$16 = 2 \times 2 \times 2 \times 2$
Now $24 = 2 \times 2 \times 2 \times 3$
And $32 = 2 \times 2 \times 2 \times 2 \times 2$
LCM = product of each distinct factor its largest occurrence times among all factorizations.
Largest occurrence of 2 among all factorizations is 5. Thus 2 will get multiplied 5 times.
Largest occurrence of 3 is one.
Thus LCM (8, 16, 24, 32)$ = 2 \times 2 \times 2 \times 2 \times 2 \times 3= 96$
LCM of 8, 16, 24 and 32 is 96.
So, the correct answer is “Option A”.
Note:Prime factorization of a number has to be done by checking all the prime factors are either a factor of given number or not. We start by the smallest prime number 2, then we check for 3 and then 5 etc. LCM and HCF are two factors of numbers which decide how much connected those numbers are. HCF (Highest Common Factor) gives the greatest factor which is common to all the numbers under consideration. LCM and HCF can be found for a list of numbers starting from a couple of them.
Complete step-by-step answer:
Least common multiple (LCM) of numbers a, b is defined to be the least number which is a multiple of both a and b.
Let us prime factorize each of the numbers.
$8 = 2 \times 2 \times 2$
The next number,
$16 = 2 \times 2 \times 2 \times 2$
Now $24 = 2 \times 2 \times 2 \times 3$
And $32 = 2 \times 2 \times 2 \times 2 \times 2$
LCM = product of each distinct factor its largest occurrence times among all factorizations.
Largest occurrence of 2 among all factorizations is 5. Thus 2 will get multiplied 5 times.
Largest occurrence of 3 is one.
Thus LCM (8, 16, 24, 32)$ = 2 \times 2 \times 2 \times 2 \times 2 \times 3= 96$
LCM of 8, 16, 24 and 32 is 96.
So, the correct answer is “Option A”.
Note:Prime factorization of a number has to be done by checking all the prime factors are either a factor of given number or not. We start by the smallest prime number 2, then we check for 3 and then 5 etc. LCM and HCF are two factors of numbers which decide how much connected those numbers are. HCF (Highest Common Factor) gives the greatest factor which is common to all the numbers under consideration. LCM and HCF can be found for a list of numbers starting from a couple of them.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

