
L.C.M. of 12, 24, and 36 is ____?
A.36
B.24
C.72
D.108
Answer
567.3k+ views
Hint: To find the LCM of the given number we need to find the multiples of each individual number and then we need to select the common multiple among all the three and then whichever number is the least is the lowest common multiple.
Complete step-by-step answer:
Given, numbers are 12, 24, and 36.
First write the multiple of all the three numbers,
Multiples of 12: 12 24 36 48 60 72 84
Multiples of 24: 24 48 72 96
Multiples of 36: 36 72 108 144
By the above observation it is clear that the 72 is the common multiple and it is also least common multiple. This method is known as the listing method.
The Lowest common multiple for 12, 24 and 36 is 72.
So, the correct answer is “Option C”.
Additional Information:
i.LCM stands for lowest common multiple. It is also known as the lowest common divisor.
ii.LCM can be found out by using the greatest divisor method, using prime factorization or by continuous division method.
Note: This question, can be solved by continuous division method as follows,
$
2\left| \!{\underline {\,
{12\,\,\,24\,\,\,36} \,}} \right. \\
3\left| \!{\underline {\,
{6\,\,\,\,\,\,\,12\,\,\,\,18} \,}} \right. \\
2\left| \!{\underline {\,
{2\,\,\,\,\,\,4\,\,\,\,\,\,6} \,}} \right. \\
2\left| \!{\underline {\,
{1\,\,\,\,\,\,\,\,2\,\,\,\,\,\,3} \,}} \right. \\
\,3\left| \!{\underline {\,
{1\,\,\,\,\,\,\,\,1\,\,\,\,\,\,3} \,}} \right. \\
\,\,\,\,\,1\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,1 \\
$
Now, multiply the divisors to get the L.C.M.
So, L.C.M. of 12, 24 and 36 will be equal to $2 \times 3 \times 2 \times 2 \times 3 \times 1 = 72$.
There is one more way to solve this problem by factor tree method, in this method we have to find all the factors of the given number, then by making the pairs we can find the L.C.M
Complete step-by-step answer:
Given, numbers are 12, 24, and 36.
First write the multiple of all the three numbers,
Multiples of 12: 12 24 36 48 60 72 84
Multiples of 24: 24 48 72 96
Multiples of 36: 36 72 108 144
By the above observation it is clear that the 72 is the common multiple and it is also least common multiple. This method is known as the listing method.
The Lowest common multiple for 12, 24 and 36 is 72.
So, the correct answer is “Option C”.
Additional Information:
i.LCM stands for lowest common multiple. It is also known as the lowest common divisor.
ii.LCM can be found out by using the greatest divisor method, using prime factorization or by continuous division method.
Note: This question, can be solved by continuous division method as follows,
$
2\left| \!{\underline {\,
{12\,\,\,24\,\,\,36} \,}} \right. \\
3\left| \!{\underline {\,
{6\,\,\,\,\,\,\,12\,\,\,\,18} \,}} \right. \\
2\left| \!{\underline {\,
{2\,\,\,\,\,\,4\,\,\,\,\,\,6} \,}} \right. \\
2\left| \!{\underline {\,
{1\,\,\,\,\,\,\,\,2\,\,\,\,\,\,3} \,}} \right. \\
\,3\left| \!{\underline {\,
{1\,\,\,\,\,\,\,\,1\,\,\,\,\,\,3} \,}} \right. \\
\,\,\,\,\,1\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,1 \\
$
Now, multiply the divisors to get the L.C.M.
So, L.C.M. of 12, 24 and 36 will be equal to $2 \times 3 \times 2 \times 2 \times 3 \times 1 = 72$.
There is one more way to solve this problem by factor tree method, in this method we have to find all the factors of the given number, then by making the pairs we can find the L.C.M
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

