
Is 128 a perfect cube? Find its cube root.
Answer
537.3k+ views
Hint:
Here, we are required to find whether 128 is a perfect cube or not. We will first find the prime factors of the given number. Then, we will consider a group of triplets of the same numbers as a single number because we are required to find the cube root. If we are able to group each and every factor in any group of triplets then the given number is a perfect cube. Hence, multiplying the remaining factors, we would be able to find the required cube root of the given number.
Complete step by step solution:
To find whether a number is a perfect cube or not, we are required to use the prime factorization method.
We know that factorization is a method of writing an original number as the product of its various factors. Also, prime numbers are those numbers which are greater than 1 and have only two factors, i.e. factor 1 and the prime number itself.
Hence, prime factorization is a method in which we write the original number as the product of various prime numbers.
Therefore, prime factorization of 128 is:
$\begin{array}{*{20}{l}}
2\| \underline {128} \\
2\| \underline {64} \\
2\| \underline {32} \\
2\| \underline {16} \\
2\| \underline 8 \\
2\| \underline 4 \\
2\| \underline 2 \\
{}\| \underline 1
\end{array}$
Now, after doing the prime factorization, we are required to club the triplets of same prime factors together, as a single prime factor and if no factor is left out then the number is a perfect cube.
Hence, 128 can be written as:
\[128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Hence, we have expressed the given number as a product of its prime factors.
Now, we would group the triplets of same prime factors together, as a single prime factor:
\[ \Rightarrow 128 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times 2\]
Here, we are not able to group the factors without leaving behind any factor which is not in any group.
Hence, 128 is not a perfect cube.
Now, solving further, and converting the group of triplets as a single prime factor, we get,
\[\sqrt[3]{{128}} = 2 \times 2 \times {2^{\dfrac{1}{3}}}\]
\[ \Rightarrow \sqrt[3]{{128}} = 4\sqrt[3]{2}\]
Hence, the Cube root of 128 is \[4\sqrt[3]{2}\].
So, we can say that 128 is not a perfect cube and cube root of 128 is \[4\sqrt[3]{2}\].
Note:
Here, we should know what a perfect cube means. If a number is multiplied thrice to itself then the number obtained is its cube. Cube root is the factor that is multiplied three times by itself to get the original number. The cube root of a perfect cube is always a whole number and not a fraction. If we get a fraction as a cube root then the number is not a perfect cube number.
Here, we are required to find whether 128 is a perfect cube or not. We will first find the prime factors of the given number. Then, we will consider a group of triplets of the same numbers as a single number because we are required to find the cube root. If we are able to group each and every factor in any group of triplets then the given number is a perfect cube. Hence, multiplying the remaining factors, we would be able to find the required cube root of the given number.
Complete step by step solution:
To find whether a number is a perfect cube or not, we are required to use the prime factorization method.
We know that factorization is a method of writing an original number as the product of its various factors. Also, prime numbers are those numbers which are greater than 1 and have only two factors, i.e. factor 1 and the prime number itself.
Hence, prime factorization is a method in which we write the original number as the product of various prime numbers.
Therefore, prime factorization of 128 is:
$\begin{array}{*{20}{l}}
2\| \underline {128} \\
2\| \underline {64} \\
2\| \underline {32} \\
2\| \underline {16} \\
2\| \underline 8 \\
2\| \underline 4 \\
2\| \underline 2 \\
{}\| \underline 1
\end{array}$
Now, after doing the prime factorization, we are required to club the triplets of same prime factors together, as a single prime factor and if no factor is left out then the number is a perfect cube.
Hence, 128 can be written as:
\[128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Hence, we have expressed the given number as a product of its prime factors.
Now, we would group the triplets of same prime factors together, as a single prime factor:
\[ \Rightarrow 128 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times 2\]
Here, we are not able to group the factors without leaving behind any factor which is not in any group.
Hence, 128 is not a perfect cube.
Now, solving further, and converting the group of triplets as a single prime factor, we get,
\[\sqrt[3]{{128}} = 2 \times 2 \times {2^{\dfrac{1}{3}}}\]
\[ \Rightarrow \sqrt[3]{{128}} = 4\sqrt[3]{2}\]
Hence, the Cube root of 128 is \[4\sqrt[3]{2}\].
So, we can say that 128 is not a perfect cube and cube root of 128 is \[4\sqrt[3]{2}\].
Note:
Here, we should know what a perfect cube means. If a number is multiplied thrice to itself then the number obtained is its cube. Cube root is the factor that is multiplied three times by itself to get the original number. The cube root of a perfect cube is always a whole number and not a fraction. If we get a fraction as a cube root then the number is not a perfect cube number.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

