Answer
Verified
405.3k+ views
Hint:
Here, we are required to find whether 128 is a perfect cube or not. We will first find the prime factors of the given number. Then, we will consider a group of triplets of the same numbers as a single number because we are required to find the cube root. If we are able to group each and every factor in any group of triplets then the given number is a perfect cube. Hence, multiplying the remaining factors, we would be able to find the required cube root of the given number.
Complete step by step solution:
To find whether a number is a perfect cube or not, we are required to use the prime factorization method.
We know that factorization is a method of writing an original number as the product of its various factors. Also, prime numbers are those numbers which are greater than 1 and have only two factors, i.e. factor 1 and the prime number itself.
Hence, prime factorization is a method in which we write the original number as the product of various prime numbers.
Therefore, prime factorization of 128 is:
$\begin{array}{*{20}{l}}
2\| \underline {128} \\
2\| \underline {64} \\
2\| \underline {32} \\
2\| \underline {16} \\
2\| \underline 8 \\
2\| \underline 4 \\
2\| \underline 2 \\
{}\| \underline 1
\end{array}$
Now, after doing the prime factorization, we are required to club the triplets of same prime factors together, as a single prime factor and if no factor is left out then the number is a perfect cube.
Hence, 128 can be written as:
\[128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Hence, we have expressed the given number as a product of its prime factors.
Now, we would group the triplets of same prime factors together, as a single prime factor:
\[ \Rightarrow 128 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times 2\]
Here, we are not able to group the factors without leaving behind any factor which is not in any group.
Hence, 128 is not a perfect cube.
Now, solving further, and converting the group of triplets as a single prime factor, we get,
\[\sqrt[3]{{128}} = 2 \times 2 \times {2^{\dfrac{1}{3}}}\]
\[ \Rightarrow \sqrt[3]{{128}} = 4\sqrt[3]{2}\]
Hence, the Cube root of 128 is \[4\sqrt[3]{2}\].
So, we can say that 128 is not a perfect cube and cube root of 128 is \[4\sqrt[3]{2}\].
Note:
Here, we should know what a perfect cube means. If a number is multiplied thrice to itself then the number obtained is its cube. Cube root is the factor that is multiplied three times by itself to get the original number. The cube root of a perfect cube is always a whole number and not a fraction. If we get a fraction as a cube root then the number is not a perfect cube number.
Here, we are required to find whether 128 is a perfect cube or not. We will first find the prime factors of the given number. Then, we will consider a group of triplets of the same numbers as a single number because we are required to find the cube root. If we are able to group each and every factor in any group of triplets then the given number is a perfect cube. Hence, multiplying the remaining factors, we would be able to find the required cube root of the given number.
Complete step by step solution:
To find whether a number is a perfect cube or not, we are required to use the prime factorization method.
We know that factorization is a method of writing an original number as the product of its various factors. Also, prime numbers are those numbers which are greater than 1 and have only two factors, i.e. factor 1 and the prime number itself.
Hence, prime factorization is a method in which we write the original number as the product of various prime numbers.
Therefore, prime factorization of 128 is:
$\begin{array}{*{20}{l}}
2\| \underline {128} \\
2\| \underline {64} \\
2\| \underline {32} \\
2\| \underline {16} \\
2\| \underline 8 \\
2\| \underline 4 \\
2\| \underline 2 \\
{}\| \underline 1
\end{array}$
Now, after doing the prime factorization, we are required to club the triplets of same prime factors together, as a single prime factor and if no factor is left out then the number is a perfect cube.
Hence, 128 can be written as:
\[128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Hence, we have expressed the given number as a product of its prime factors.
Now, we would group the triplets of same prime factors together, as a single prime factor:
\[ \Rightarrow 128 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times 2\]
Here, we are not able to group the factors without leaving behind any factor which is not in any group.
Hence, 128 is not a perfect cube.
Now, solving further, and converting the group of triplets as a single prime factor, we get,
\[\sqrt[3]{{128}} = 2 \times 2 \times {2^{\dfrac{1}{3}}}\]
\[ \Rightarrow \sqrt[3]{{128}} = 4\sqrt[3]{2}\]
Hence, the Cube root of 128 is \[4\sqrt[3]{2}\].
So, we can say that 128 is not a perfect cube and cube root of 128 is \[4\sqrt[3]{2}\].
Note:
Here, we should know what a perfect cube means. If a number is multiplied thrice to itself then the number obtained is its cube. Cube root is the factor that is multiplied three times by itself to get the original number. The cube root of a perfect cube is always a whole number and not a fraction. If we get a fraction as a cube root then the number is not a perfect cube number.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths