
Is $10$ rational or irrational?
Answer
470.1k+ views
Hint: First, we shall analyze the given problem so that we are able to solve it. Here, we are given a number $10$ and we need to find whether $10$is a rational number or an irrational number. Before getting into the answer, we should know what is a rational number and what is an irrational number. If we learn about it, we can easily answer.
Complete step-by-step answer:
A rational number is a number that must be expressed as some fraction and also as a positive number, a negative number, and zero and we can write a rational number mathematically as $\dfrac{p}{q}$ , where $q$ is not equal to zero and $p$, $q$are integers.
When the given number is not rational ( not in the form of $\dfrac{p}{q}$ , where $q$ is not equal to zero and $p$ , $q$are integers), we call that number an irrational number. Also, the irrational numbers have endless non-repeating after the decimal point where that decimal number is changed into fractions.
Here we are given a number $10$.
Now, we shall write this number as follows.
$10 = \dfrac{{10}}{1}$
We can note that both $10$ and $1$are integers and the denominator is not equal to zero.
Hence, we can conclude that $10$is a rational number.
Note: Some examples of rational numbers are listed as follows.
a) $4$ is a rational number because $4$can be written as $\dfrac{4}{1}$ where $4$and $1$ are integers.
b) $\dfrac{3}{2}$ is a rational number because $3$ and $2$ are integers.
Some examples of irrational numbers are listed as follows.
a) $\dfrac{2}{0}$ is an irrational number because the denominator is equal to zero.
b) $\sqrt 3 $ is an irrational number because $\sqrt 3 = 1.732050808$ having endless digits after the decimal point.
Complete step-by-step answer:
A rational number is a number that must be expressed as some fraction and also as a positive number, a negative number, and zero and we can write a rational number mathematically as $\dfrac{p}{q}$ , where $q$ is not equal to zero and $p$, $q$are integers.
When the given number is not rational ( not in the form of $\dfrac{p}{q}$ , where $q$ is not equal to zero and $p$ , $q$are integers), we call that number an irrational number. Also, the irrational numbers have endless non-repeating after the decimal point where that decimal number is changed into fractions.
Here we are given a number $10$.
Now, we shall write this number as follows.
$10 = \dfrac{{10}}{1}$
We can note that both $10$ and $1$are integers and the denominator is not equal to zero.
Hence, we can conclude that $10$is a rational number.
Note: Some examples of rational numbers are listed as follows.
a) $4$ is a rational number because $4$can be written as $\dfrac{4}{1}$ where $4$and $1$ are integers.
b) $\dfrac{3}{2}$ is a rational number because $3$ and $2$ are integers.
Some examples of irrational numbers are listed as follows.
a) $\dfrac{2}{0}$ is an irrational number because the denominator is equal to zero.
b) $\sqrt 3 $ is an irrational number because $\sqrt 3 = 1.732050808$ having endless digits after the decimal point.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


