
Ionization energy (IE) of Na is 513 kJ/mol. The value in eV/molecule is $x\text{ x}{{10}^{-1}}$. Then the value of x is ___________.
Answer
587.7k+ views
Hint: Ionization energy (IE) is a measure of the amount of energy required to take out an electron from the shell of an atom. Energy is supplied to surpass the existing forces of attraction in the element. It is the highest for noble gases.
Complete answer:
Let us understand the concept of Ionization Potential before the calculations.
“The first ionization energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of +1.” It can be portrayed by the following reaction –
$M(g)\to {{M}^{+}}(g)+{{e}^{-}}$
The amount of energy which is required to carry out the above reaction is known as ionization potential.
Ionization energy can be expressed in any of the following units –
eV/ molecule
kJ/ mole
kcal/ mole
Now, according to the question, Ionization energy (IE) of Na is 513 kJ/mol.
1 kJ/mole = $\dfrac{1000}{{{N}_{A}}}$ J/ molecule
Where, ${{\text{N}}_{\text{A}}}$ = Avogadro’s number
513 kJ/mole = 513 x $\dfrac{1000}{{{N}_{A}}}$ J/ molecule = 513 x $\dfrac{\text{1000}}{\text{6}\text{.02 x 1}{{\text{0}}^{\text{23}}}}\text{ = 8}\text{.522 x 1}{{\text{0}}^{\text{-19}}}$ J/ molecule
1 Joule = $\dfrac{\text{1}}{\text{1}\text{.6 x 1}{{\text{0}}^{\text{19}}}}$eV
So, we get $\dfrac{\text{8}\text{.522x1}{{\text{0}}^{\text{-19}}}}{\text{1}\text{.6x1}{{\text{0}}^{\text{19}}}}$eV = $\text{53}\text{.26 x}{{10}^{-1}}$ eV.
Therefore, the answer is – The value of x is 53.26.
Additional Information: Noble gases have the highest ionization energies because they are very stable.
Note: Alternately, you can also do it by remembering a simple conversion –
1 eV = 96.49 kJ/mol.
Given, Ionization energy (IE) of Na is 513 kJ/mol.
From the above conversion, 1 kJ/ mol = $\dfrac{1}{96.49}$ eV
Therefore, 513 kJ/ mol = $\dfrac{513}{96.49}$ eV = 5.32 eV
Complete answer:
Let us understand the concept of Ionization Potential before the calculations.
“The first ionization energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of +1.” It can be portrayed by the following reaction –
$M(g)\to {{M}^{+}}(g)+{{e}^{-}}$
The amount of energy which is required to carry out the above reaction is known as ionization potential.
Ionization energy can be expressed in any of the following units –
eV/ molecule
kJ/ mole
kcal/ mole
Now, according to the question, Ionization energy (IE) of Na is 513 kJ/mol.
1 kJ/mole = $\dfrac{1000}{{{N}_{A}}}$ J/ molecule
Where, ${{\text{N}}_{\text{A}}}$ = Avogadro’s number
513 kJ/mole = 513 x $\dfrac{1000}{{{N}_{A}}}$ J/ molecule = 513 x $\dfrac{\text{1000}}{\text{6}\text{.02 x 1}{{\text{0}}^{\text{23}}}}\text{ = 8}\text{.522 x 1}{{\text{0}}^{\text{-19}}}$ J/ molecule
1 Joule = $\dfrac{\text{1}}{\text{1}\text{.6 x 1}{{\text{0}}^{\text{19}}}}$eV
So, we get $\dfrac{\text{8}\text{.522x1}{{\text{0}}^{\text{-19}}}}{\text{1}\text{.6x1}{{\text{0}}^{\text{19}}}}$eV = $\text{53}\text{.26 x}{{10}^{-1}}$ eV.
Therefore, the answer is – The value of x is 53.26.
Additional Information: Noble gases have the highest ionization energies because they are very stable.
Note: Alternately, you can also do it by remembering a simple conversion –
1 eV = 96.49 kJ/mol.
Given, Ionization energy (IE) of Na is 513 kJ/mol.
From the above conversion, 1 kJ/ mol = $\dfrac{1}{96.49}$ eV
Therefore, 513 kJ/ mol = $\dfrac{513}{96.49}$ eV = 5.32 eV
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

