
Ionization energy (IE) of Na is 513 kJ/mol. The value in eV/molecule is $x\text{ x}{{10}^{-1}}$. Then the value of x is ___________.
Answer
590.7k+ views
Hint: Ionization energy (IE) is a measure of the amount of energy required to take out an electron from the shell of an atom. Energy is supplied to surpass the existing forces of attraction in the element. It is the highest for noble gases.
Complete answer:
Let us understand the concept of Ionization Potential before the calculations.
“The first ionization energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of +1.” It can be portrayed by the following reaction –
$M(g)\to {{M}^{+}}(g)+{{e}^{-}}$
The amount of energy which is required to carry out the above reaction is known as ionization potential.
Ionization energy can be expressed in any of the following units –
eV/ molecule
kJ/ mole
kcal/ mole
Now, according to the question, Ionization energy (IE) of Na is 513 kJ/mol.
1 kJ/mole = $\dfrac{1000}{{{N}_{A}}}$ J/ molecule
Where, ${{\text{N}}_{\text{A}}}$ = Avogadro’s number
513 kJ/mole = 513 x $\dfrac{1000}{{{N}_{A}}}$ J/ molecule = 513 x $\dfrac{\text{1000}}{\text{6}\text{.02 x 1}{{\text{0}}^{\text{23}}}}\text{ = 8}\text{.522 x 1}{{\text{0}}^{\text{-19}}}$ J/ molecule
1 Joule = $\dfrac{\text{1}}{\text{1}\text{.6 x 1}{{\text{0}}^{\text{19}}}}$eV
So, we get $\dfrac{\text{8}\text{.522x1}{{\text{0}}^{\text{-19}}}}{\text{1}\text{.6x1}{{\text{0}}^{\text{19}}}}$eV = $\text{53}\text{.26 x}{{10}^{-1}}$ eV.
Therefore, the answer is – The value of x is 53.26.
Additional Information: Noble gases have the highest ionization energies because they are very stable.
Note: Alternately, you can also do it by remembering a simple conversion –
1 eV = 96.49 kJ/mol.
Given, Ionization energy (IE) of Na is 513 kJ/mol.
From the above conversion, 1 kJ/ mol = $\dfrac{1}{96.49}$ eV
Therefore, 513 kJ/ mol = $\dfrac{513}{96.49}$ eV = 5.32 eV
Complete answer:
Let us understand the concept of Ionization Potential before the calculations.
“The first ionization energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of +1.” It can be portrayed by the following reaction –
$M(g)\to {{M}^{+}}(g)+{{e}^{-}}$
The amount of energy which is required to carry out the above reaction is known as ionization potential.
Ionization energy can be expressed in any of the following units –
eV/ molecule
kJ/ mole
kcal/ mole
Now, according to the question, Ionization energy (IE) of Na is 513 kJ/mol.
1 kJ/mole = $\dfrac{1000}{{{N}_{A}}}$ J/ molecule
Where, ${{\text{N}}_{\text{A}}}$ = Avogadro’s number
513 kJ/mole = 513 x $\dfrac{1000}{{{N}_{A}}}$ J/ molecule = 513 x $\dfrac{\text{1000}}{\text{6}\text{.02 x 1}{{\text{0}}^{\text{23}}}}\text{ = 8}\text{.522 x 1}{{\text{0}}^{\text{-19}}}$ J/ molecule
1 Joule = $\dfrac{\text{1}}{\text{1}\text{.6 x 1}{{\text{0}}^{\text{19}}}}$eV
So, we get $\dfrac{\text{8}\text{.522x1}{{\text{0}}^{\text{-19}}}}{\text{1}\text{.6x1}{{\text{0}}^{\text{19}}}}$eV = $\text{53}\text{.26 x}{{10}^{-1}}$ eV.
Therefore, the answer is – The value of x is 53.26.
Additional Information: Noble gases have the highest ionization energies because they are very stable.
Note: Alternately, you can also do it by remembering a simple conversion –
1 eV = 96.49 kJ/mol.
Given, Ionization energy (IE) of Na is 513 kJ/mol.
From the above conversion, 1 kJ/ mol = $\dfrac{1}{96.49}$ eV
Therefore, 513 kJ/ mol = $\dfrac{513}{96.49}$ eV = 5.32 eV
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

