
Iodate ion,$\text{IO}_{\text{3}}^{\text{-}}$ oxidises $\text{SO}_{\text{3}}^{\text{2-}}$ to $\text{SO}_{4}^{\text{2-}}$ in acidic medium. If $\text{100ml}$ sample of solution containing $\text{2}\text{.14g}$ of $\text{KI}{{\text{O}}_{\text{3}}}$ reacts with $\text{60ml}$ of $\text{0}\text{.5M}$ $\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}$ solution, then final oxidation state of iodine is $\text{-x}$. The value of $\text{x}$ is:
Answer
567.3k+ views
Hint: In a redox reaction oxidation and reduction both involve simultaneously where one atom gets oxidised and the other gets reduced.
The equivalent weight of an oxidizing agent is that weight which accepts one mole electron in a chemical reaction.
\[\text{Equivalent}\,\text{weight}\,\text{of}\,\text{an}\,\text{oxidant}\,\,\text{=}\,\text{ }\dfrac{\text{molecular}\,\text{weight}}{\text{number}\,\text{of}\,\text{electrons}\,\text{gained}\,\text{by}\,\text{one}\,\text{atom}}\]
The equivalent weight of a reducing agent is the weight which donates one mole of electron in a chemical reaction.
\[\text{Equivalent}\,\text{weight}\,\text{of}\,\text{reducant }\,\text{= }\dfrac{\text{molecular}\,\text{weight}}{\text{number}\,\text{of}\,\text{electrons}\,\text{lost}\,\text{by}\,\text{one}\,\text{atom}}\]
In a redox reaction \[\text{Equivalent}\,\text{weight}\,\,\text{= }\dfrac{\text{molecular}\,\text{weight}}{\text{change in oxidation}\,\text{number}}\]
According to the law of equivalence, the substances combine together in the ratio of their equivalent masses.
\[\begin{align}
& \text{Normality(N)}\,\,\text{=}\,\,\text{Molarity(M)}\,\,\text{ }\!\!\times\!\!\text{ }\,\,\text{valency}\,\text{factor(f)} \\
& \text{For}\,\text{a redox reaction}\,\,-\text{valency}\,\text{factor(f)}=\,\,\text{change}\,\,\text{in}\,\text{oxidation}\,\text{number}
\end{align}\]
Complete Solution :
To calculate final oxidation state we will follow these steps –
In first step we will calculate the gram equivalent of $\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}$.
The reaction in this question occurs in following manner-
\[\text{KI}{{\text{O}}_{\text{3}}}\,\text{+}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}\,\,\to \,\text{SO}_{\text{4}}^{\text{2-}}\,\text{+}\,\,{{\text{I}}^{\text{x}}}\]
The oxidation state of \[\text{I}\] in $\text{KI}{{\text{O}}_{\text{3}}}$ is $+5$ and the oxidation state of $\text{S}$ is changes from $+4\to +6$.
So the valency factor (f) for $\text{S}\,\text{=}\,\text{2}$
So,
\[\begin{align}
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}\text{ = }\,\text{N }\!\!\times\!\!\text{ }\,\,\text{Volume(L)} \\
& =\,\text{M}\,\,\text{ }\!\!\times\!\!\text{ }\,\,\text{f}\,\text{ }\!\!\times\!\!\text{ }\,\,\text{Volume(L)} \\
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}=\,\dfrac{0.5\,\times \,2\,\times \,60}{1000}\,\,\,\,\,\{\,\text{f = 2}\,\,\text{change}\,\,\text{in}\,\,\text{the oxidation}\,\text{state}\,\text{of}\,\text{sulphur }\!\!\}\!\!\text{ } \\
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}=\,0.06\,\text{gm}
\end{align}\] So, $\text{KI}{{\text{O}}_{\text{3}}}$reacts with the 0.06gm equivalent of $\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}$.
In second step we will calculate the gram equivalent of $\text{KI}{{\text{O}}_{\text{3}}}$
\[\begin{align}
& \text{No}\,\text{of}\,\text{mole}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\,\,\,\,\,\,\text{n}\,\,=\,\,\dfrac{\text{W}}{\text{M}\text{.W}} \\
& \text{n}\,\text{ = }\,\dfrac{2.14}{214}\,\,=\,\,0.01
\end{align}\]
\[\begin{align}
& \text{Molarity}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}} \\
& \,\text{M}\,\text{=}\,\,\dfrac{\text{n}}{{{\text{V}}_{\text{(L)}}}} \\
& \,\,\text{M}\,\text{=}\,\,\dfrac{\text{0}\text{.01}}{\text{100}\,\text{ml}}\text{ }\!\!\times\!\!\text{ }\,\text{1000} \\
& \text{M}\,\,\text{=}\,\,\text{0}\text{.1}
\end{align}\]
Since valency factor of \[\text{I}\] = change in oxidation state = (5-x)
Number of gm. Equivalent of $\text{KI}{{\text{O}}_{\text{3}}}$
\[\begin{align}
& \text{gm}\,\text{eq}\text{.}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\text{=}\,\text{N }\!\!\times\!\!\text{ }\,\,\text{Volume}\left( \text{L} \right) \\
& \text{=}\,\text{M }\!\!\times\!\!\text{ }\,\text{f }\!\!\times\!\!\text{ }\,{{\text{V}}_{\text{(L)}}} \\
& \,\text{=}\,\text{0}\text{.1 }\!\!\times\!\!\text{ }\,\,\text{(5-x) }\,\text{ }\!\!\times\!\!\text{ }\,\dfrac{\text{100}}{\text{1000}} \\
& \text{gm}\,\text{eq}\text{.}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\,\text{= }\,\text{0}\text{.01 }\!\!\times\!\!\text{ }\,\,\text{(5-x)} \\
& \text{since, }\,\text{gram}\,\,\text{equivalent}\,\text{of}\,\text{reacting}\,\text{agent}\,\text{are}\,\text{equal} \\
& \text{so,}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{gm}\,\text{eq}\text{.}\,\text{of}\,\,\text{KI}{{\text{O}}_{\text{3}}}\text{=}\,\,\text{gm}\,\text{eq}\text{.}\,\text{of}\,\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}} \\
& \text{0}\text{.01 }\!\!\times\!\!\text{ }\,\,\text{(5-x) = }\,\text{0}\text{.06} \\
& \text{5-x}\,\,\text{=}\,\,\text{6} \\
& \text{x = -1}
\end{align}\]
So the value of final valency of \[\text{I}\] in the redox reaction \[x = -1\]
So, the correct answer is “Option B”.
Note: One equivalent of an element combined with one equivalent of another element, and in a chemical reaction equivalent and milli equivalent of reactants react in equal amounts to give same no. of equivalent or milli equivalent of products separately.
The equivalent weight of an oxidizing agent is that weight which accepts one mole electron in a chemical reaction.
\[\text{Equivalent}\,\text{weight}\,\text{of}\,\text{an}\,\text{oxidant}\,\,\text{=}\,\text{ }\dfrac{\text{molecular}\,\text{weight}}{\text{number}\,\text{of}\,\text{electrons}\,\text{gained}\,\text{by}\,\text{one}\,\text{atom}}\]
The equivalent weight of a reducing agent is the weight which donates one mole of electron in a chemical reaction.
\[\text{Equivalent}\,\text{weight}\,\text{of}\,\text{reducant }\,\text{= }\dfrac{\text{molecular}\,\text{weight}}{\text{number}\,\text{of}\,\text{electrons}\,\text{lost}\,\text{by}\,\text{one}\,\text{atom}}\]
In a redox reaction \[\text{Equivalent}\,\text{weight}\,\,\text{= }\dfrac{\text{molecular}\,\text{weight}}{\text{change in oxidation}\,\text{number}}\]
According to the law of equivalence, the substances combine together in the ratio of their equivalent masses.
\[\begin{align}
& \text{Normality(N)}\,\,\text{=}\,\,\text{Molarity(M)}\,\,\text{ }\!\!\times\!\!\text{ }\,\,\text{valency}\,\text{factor(f)} \\
& \text{For}\,\text{a redox reaction}\,\,-\text{valency}\,\text{factor(f)}=\,\,\text{change}\,\,\text{in}\,\text{oxidation}\,\text{number}
\end{align}\]
Complete Solution :
To calculate final oxidation state we will follow these steps –
In first step we will calculate the gram equivalent of $\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}$.
The reaction in this question occurs in following manner-
\[\text{KI}{{\text{O}}_{\text{3}}}\,\text{+}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}\,\,\to \,\text{SO}_{\text{4}}^{\text{2-}}\,\text{+}\,\,{{\text{I}}^{\text{x}}}\]
The oxidation state of \[\text{I}\] in $\text{KI}{{\text{O}}_{\text{3}}}$ is $+5$ and the oxidation state of $\text{S}$ is changes from $+4\to +6$.
So the valency factor (f) for $\text{S}\,\text{=}\,\text{2}$
So,
\[\begin{align}
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}\text{ = }\,\text{N }\!\!\times\!\!\text{ }\,\,\text{Volume(L)} \\
& =\,\text{M}\,\,\text{ }\!\!\times\!\!\text{ }\,\,\text{f}\,\text{ }\!\!\times\!\!\text{ }\,\,\text{Volume(L)} \\
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}=\,\dfrac{0.5\,\times \,2\,\times \,60}{1000}\,\,\,\,\,\{\,\text{f = 2}\,\,\text{change}\,\,\text{in}\,\,\text{the oxidation}\,\text{state}\,\text{of}\,\text{sulphur }\!\!\}\!\!\text{ } \\
& \text{No}\,\text{of}\,\text{gm}\text{.}\,\text{equivalent}\,\text{of}\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}=\,0.06\,\text{gm}
\end{align}\] So, $\text{KI}{{\text{O}}_{\text{3}}}$reacts with the 0.06gm equivalent of $\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}}$.
In second step we will calculate the gram equivalent of $\text{KI}{{\text{O}}_{\text{3}}}$
\[\begin{align}
& \text{No}\,\text{of}\,\text{mole}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\,\,\,\,\,\,\text{n}\,\,=\,\,\dfrac{\text{W}}{\text{M}\text{.W}} \\
& \text{n}\,\text{ = }\,\dfrac{2.14}{214}\,\,=\,\,0.01
\end{align}\]
\[\begin{align}
& \text{Molarity}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}} \\
& \,\text{M}\,\text{=}\,\,\dfrac{\text{n}}{{{\text{V}}_{\text{(L)}}}} \\
& \,\,\text{M}\,\text{=}\,\,\dfrac{\text{0}\text{.01}}{\text{100}\,\text{ml}}\text{ }\!\!\times\!\!\text{ }\,\text{1000} \\
& \text{M}\,\,\text{=}\,\,\text{0}\text{.1}
\end{align}\]
Since valency factor of \[\text{I}\] = change in oxidation state = (5-x)
Number of gm. Equivalent of $\text{KI}{{\text{O}}_{\text{3}}}$
\[\begin{align}
& \text{gm}\,\text{eq}\text{.}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\text{=}\,\text{N }\!\!\times\!\!\text{ }\,\,\text{Volume}\left( \text{L} \right) \\
& \text{=}\,\text{M }\!\!\times\!\!\text{ }\,\text{f }\!\!\times\!\!\text{ }\,{{\text{V}}_{\text{(L)}}} \\
& \,\text{=}\,\text{0}\text{.1 }\!\!\times\!\!\text{ }\,\,\text{(5-x) }\,\text{ }\!\!\times\!\!\text{ }\,\dfrac{\text{100}}{\text{1000}} \\
& \text{gm}\,\text{eq}\text{.}\,\text{of}\,\text{KI}{{\text{O}}_{\text{3}}}\,\text{= }\,\text{0}\text{.01 }\!\!\times\!\!\text{ }\,\,\text{(5-x)} \\
& \text{since, }\,\text{gram}\,\,\text{equivalent}\,\text{of}\,\text{reacting}\,\text{agent}\,\text{are}\,\text{equal} \\
& \text{so,}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{gm}\,\text{eq}\text{.}\,\text{of}\,\,\text{KI}{{\text{O}}_{\text{3}}}\text{=}\,\,\text{gm}\,\text{eq}\text{.}\,\text{of}\,\,\text{N}{{\text{a}}_{\text{2}}}\text{S}{{\text{O}}_{\text{3}}} \\
& \text{0}\text{.01 }\!\!\times\!\!\text{ }\,\,\text{(5-x) = }\,\text{0}\text{.06} \\
& \text{5-x}\,\,\text{=}\,\,\text{6} \\
& \text{x = -1}
\end{align}\]
So the value of final valency of \[\text{I}\] in the redox reaction \[x = -1\]
So, the correct answer is “Option B”.
Note: One equivalent of an element combined with one equivalent of another element, and in a chemical reaction equivalent and milli equivalent of reactants react in equal amounts to give same no. of equivalent or milli equivalent of products separately.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

