
What is the interval of convergence of \[\sum\limits_{}^{} {\dfrac{{{x^n}}}{{n!}}} \]?
Answer
493.5k+ views
Hint: To find the interval of convergence we will first check whether the given function is convergent or divergent. For that we will use the ratio test. Then we will evaluate the limit. If the limit we get is less than one and independent of \[x\], then the series will be convergent.
Complete step by step answer:
In a positive term series \[\sum\limits_{}^{} {{u_n}} \], if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \lambda \], then the series converges for \[\lambda < 1\] and diverges for \[\lambda > 1\].
Now we will take the absolute values and apply the ratio test.
We have;
\[|{u_{n + 1}}| = \dfrac{{|x{|^{n + 1}}}}{{\left( {n + 1} \right)!}}\]
\[|{u_n}| = \dfrac{{|x{|^n}}}{{n!}}\]
So, we have;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\dfrac{{|x{|^{n + 1}}}}{{\left( {n + 1} \right)!}}} \right)}}{{\left( {\dfrac{{|x{|^n}}}{{n!}}} \right)}}\]
Further solving we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\dfrac{{|x| \times |x{|^n}}}{{\left( {n + 1} \right)n!}}} \right)}}{{\left( {\dfrac{{|x{|^n}}}{{n!}}} \right)}}\]
Cancelling the terms in the numerator and the denominator, we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{|x|}}{{n + 1}}\]
Putting the value, we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{|x|}}{{\infty + 1}}\]
Using the concept that any number divided by infinity is equal to zero. We get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = 0\]
Now, the value of this limit i.e., zero is less than one and also independent of \[x\]. So, the given series converges for all values of \[x\].
Hence the interval of convergence of is \[ - \infty < x < \infty \].
Note:
The given series is convergent and it has a value equal to \[{e^x}\]. One point to note is that a sequence which is monotonic and bounded is convergent. A sequence \[{a_n}\] is said to be bounded if there exists a number \[k\] such that \[{a_n} < k\] for every number \[n\].
Complete step by step answer:
In a positive term series \[\sum\limits_{}^{} {{u_n}} \], if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \lambda \], then the series converges for \[\lambda < 1\] and diverges for \[\lambda > 1\].
Now we will take the absolute values and apply the ratio test.
We have;
\[|{u_{n + 1}}| = \dfrac{{|x{|^{n + 1}}}}{{\left( {n + 1} \right)!}}\]
\[|{u_n}| = \dfrac{{|x{|^n}}}{{n!}}\]
So, we have;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\dfrac{{|x{|^{n + 1}}}}{{\left( {n + 1} \right)!}}} \right)}}{{\left( {\dfrac{{|x{|^n}}}{{n!}}} \right)}}\]
Further solving we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\dfrac{{|x| \times |x{|^n}}}{{\left( {n + 1} \right)n!}}} \right)}}{{\left( {\dfrac{{|x{|^n}}}{{n!}}} \right)}}\]
Cancelling the terms in the numerator and the denominator, we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{|x|}}{{n + 1}}\]
Putting the value, we get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{|x|}}{{\infty + 1}}\]
Using the concept that any number divided by infinity is equal to zero. We get;
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{|{u_{n + 1}}|}}{{|{u_n}|}} = 0\]
Now, the value of this limit i.e., zero is less than one and also independent of \[x\]. So, the given series converges for all values of \[x\].
Hence the interval of convergence of is \[ - \infty < x < \infty \].
Note:
The given series is convergent and it has a value equal to \[{e^x}\]. One point to note is that a sequence which is monotonic and bounded is convergent. A sequence \[{a_n}\] is said to be bounded if there exists a number \[k\] such that \[{a_n} < k\] for every number \[n\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

