
Integrate the rational function$\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}$.
Answer
598.5k+ views
Hint: Try to separate different components of the numerator over the common denominator and then integrate it by using the method of partial fraction.
Complete step-by-step solution:
Let $P = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Rewrite the above expression by using the concept of algebra of integration as:
\[\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx = } \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{{{x^2}}}{{x\left( {1 - 2x} \right)dx}}} } \]
Cancel out the common factors from numerator and denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{x}{{1 - 2x}}dx} } $
To solve the question in an easy way for that we will name both the integrands separately.
Let,$M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ and $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Now simplify $M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ by using the concept of integration of rational in $M$ we get
$
1 = A\left( {1 - 2x} \right) + Bx \\
1 = x\left( { - 2A + B} \right) + A \\
$
On comparing both sides,
$A = 1$ and $ - 2A + B = 0$
Now simplify, $B = 2$ and $A = 2$
Hence,
$M = \int {\dfrac{1}{x} + \dfrac{2}{{1 - 2x}}dx = } \log x = + 2\log \left( {1 - 2x} \right)$.
Now we have to solve $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Let $1 - 2x = \upsilon $ which implies $x = \dfrac{{\left( {1 - \upsilon } \right)}}{2}$
On differentiating above on both sides, we get $ - 2dx = d\upsilon $
Now substitute $ - 2dx = d\upsilon $ in $N = \int {\dfrac{x}{{1 - 2x}}dx} $ and simplify by integrating,
$N = \dfrac{{ - 1}}{4}\int {1 - \upsilon .d\upsilon = \dfrac{{ - 1}}{4}\left[ {\upsilon - \dfrac{{{\upsilon ^2}}}{2}} \right]} $
Back substitute the value of $\upsilon $ in the above obtained expression.
$
N = \dfrac{{ - 1}}{4}\left[ {1 - 2x - \dfrac{{{{\left( {1 - 2x} \right)}^2}}}{2}} \right] \\
= \dfrac{{ - 1}}{4}\left[ {\dfrac{{2 - 4x - \left( {{1^2} - 2*2x*1 + 2{x^2}} \right)}}{2}} \right] \\
= \dfrac{{4{x^2} + 1 - 4x + 4x - 2}}{8} \\
= \dfrac{{4{x^2} - 1}}{8} \\
$
Hence, $P = M + N = \log \dfrac{x}{{{{\left( {1 - 2x} \right)}^2}}} + \dfrac{{4{x^2} - 1}}{8} + C$
Note: Solving the question becomes easier if different parts are denoted by names like M and N. This approach makes the question easier to handle and solve.
Complete step-by-step solution:
Let $P = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Rewrite the above expression by using the concept of algebra of integration as:
\[\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx = } \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{{{x^2}}}{{x\left( {1 - 2x} \right)dx}}} } \]
Cancel out the common factors from numerator and denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{x}{{1 - 2x}}dx} } $
To solve the question in an easy way for that we will name both the integrands separately.
Let,$M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ and $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Now simplify $M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ by using the concept of integration of rational in $M$ we get
$
1 = A\left( {1 - 2x} \right) + Bx \\
1 = x\left( { - 2A + B} \right) + A \\
$
On comparing both sides,
$A = 1$ and $ - 2A + B = 0$
Now simplify, $B = 2$ and $A = 2$
Hence,
$M = \int {\dfrac{1}{x} + \dfrac{2}{{1 - 2x}}dx = } \log x = + 2\log \left( {1 - 2x} \right)$.
Now we have to solve $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Let $1 - 2x = \upsilon $ which implies $x = \dfrac{{\left( {1 - \upsilon } \right)}}{2}$
On differentiating above on both sides, we get $ - 2dx = d\upsilon $
Now substitute $ - 2dx = d\upsilon $ in $N = \int {\dfrac{x}{{1 - 2x}}dx} $ and simplify by integrating,
$N = \dfrac{{ - 1}}{4}\int {1 - \upsilon .d\upsilon = \dfrac{{ - 1}}{4}\left[ {\upsilon - \dfrac{{{\upsilon ^2}}}{2}} \right]} $
Back substitute the value of $\upsilon $ in the above obtained expression.
$
N = \dfrac{{ - 1}}{4}\left[ {1 - 2x - \dfrac{{{{\left( {1 - 2x} \right)}^2}}}{2}} \right] \\
= \dfrac{{ - 1}}{4}\left[ {\dfrac{{2 - 4x - \left( {{1^2} - 2*2x*1 + 2{x^2}} \right)}}{2}} \right] \\
= \dfrac{{4{x^2} + 1 - 4x + 4x - 2}}{8} \\
= \dfrac{{4{x^2} - 1}}{8} \\
$
Hence, $P = M + N = \log \dfrac{x}{{{{\left( {1 - 2x} \right)}^2}}} + \dfrac{{4{x^2} - 1}}{8} + C$
Note: Solving the question becomes easier if different parts are denoted by names like M and N. This approach makes the question easier to handle and solve.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

