
Integrate the rational function$\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}$.
Answer
583.8k+ views
Hint: Try to separate different components of the numerator over the common denominator and then integrate it by using the method of partial fraction.
Complete step-by-step solution:
Let $P = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Rewrite the above expression by using the concept of algebra of integration as:
\[\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx = } \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{{{x^2}}}{{x\left( {1 - 2x} \right)dx}}} } \]
Cancel out the common factors from numerator and denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{x}{{1 - 2x}}dx} } $
To solve the question in an easy way for that we will name both the integrands separately.
Let,$M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ and $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Now simplify $M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ by using the concept of integration of rational in $M$ we get
$
1 = A\left( {1 - 2x} \right) + Bx \\
1 = x\left( { - 2A + B} \right) + A \\
$
On comparing both sides,
$A = 1$ and $ - 2A + B = 0$
Now simplify, $B = 2$ and $A = 2$
Hence,
$M = \int {\dfrac{1}{x} + \dfrac{2}{{1 - 2x}}dx = } \log x = + 2\log \left( {1 - 2x} \right)$.
Now we have to solve $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Let $1 - 2x = \upsilon $ which implies $x = \dfrac{{\left( {1 - \upsilon } \right)}}{2}$
On differentiating above on both sides, we get $ - 2dx = d\upsilon $
Now substitute $ - 2dx = d\upsilon $ in $N = \int {\dfrac{x}{{1 - 2x}}dx} $ and simplify by integrating,
$N = \dfrac{{ - 1}}{4}\int {1 - \upsilon .d\upsilon = \dfrac{{ - 1}}{4}\left[ {\upsilon - \dfrac{{{\upsilon ^2}}}{2}} \right]} $
Back substitute the value of $\upsilon $ in the above obtained expression.
$
N = \dfrac{{ - 1}}{4}\left[ {1 - 2x - \dfrac{{{{\left( {1 - 2x} \right)}^2}}}{2}} \right] \\
= \dfrac{{ - 1}}{4}\left[ {\dfrac{{2 - 4x - \left( {{1^2} - 2*2x*1 + 2{x^2}} \right)}}{2}} \right] \\
= \dfrac{{4{x^2} + 1 - 4x + 4x - 2}}{8} \\
= \dfrac{{4{x^2} - 1}}{8} \\
$
Hence, $P = M + N = \log \dfrac{x}{{{{\left( {1 - 2x} \right)}^2}}} + \dfrac{{4{x^2} - 1}}{8} + C$
Note: Solving the question becomes easier if different parts are denoted by names like M and N. This approach makes the question easier to handle and solve.
Complete step-by-step solution:
Let $P = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} $
Rewrite the above expression by using the concept of algebra of integration as:
\[\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx = } \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{{{x^2}}}{{x\left( {1 - 2x} \right)dx}}} } \]
Cancel out the common factors from numerator and denominator.
$ \Rightarrow \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx - \int {\dfrac{x}{{1 - 2x}}dx} } $
To solve the question in an easy way for that we will name both the integrands separately.
Let,$M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ and $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Now simplify $M = \int {\dfrac{1}{{x\left( {1 - 2x} \right)}}dx} $ by using the concept of integration of rational in $M$ we get
$
1 = A\left( {1 - 2x} \right) + Bx \\
1 = x\left( { - 2A + B} \right) + A \\
$
On comparing both sides,
$A = 1$ and $ - 2A + B = 0$
Now simplify, $B = 2$ and $A = 2$
Hence,
$M = \int {\dfrac{1}{x} + \dfrac{2}{{1 - 2x}}dx = } \log x = + 2\log \left( {1 - 2x} \right)$.
Now we have to solve $N = \int {\dfrac{x}{{1 - 2x}}dx} $.
Let $1 - 2x = \upsilon $ which implies $x = \dfrac{{\left( {1 - \upsilon } \right)}}{2}$
On differentiating above on both sides, we get $ - 2dx = d\upsilon $
Now substitute $ - 2dx = d\upsilon $ in $N = \int {\dfrac{x}{{1 - 2x}}dx} $ and simplify by integrating,
$N = \dfrac{{ - 1}}{4}\int {1 - \upsilon .d\upsilon = \dfrac{{ - 1}}{4}\left[ {\upsilon - \dfrac{{{\upsilon ^2}}}{2}} \right]} $
Back substitute the value of $\upsilon $ in the above obtained expression.
$
N = \dfrac{{ - 1}}{4}\left[ {1 - 2x - \dfrac{{{{\left( {1 - 2x} \right)}^2}}}{2}} \right] \\
= \dfrac{{ - 1}}{4}\left[ {\dfrac{{2 - 4x - \left( {{1^2} - 2*2x*1 + 2{x^2}} \right)}}{2}} \right] \\
= \dfrac{{4{x^2} + 1 - 4x + 4x - 2}}{8} \\
= \dfrac{{4{x^2} - 1}}{8} \\
$
Hence, $P = M + N = \log \dfrac{x}{{{{\left( {1 - 2x} \right)}^2}}} + \dfrac{{4{x^2} - 1}}{8} + C$
Note: Solving the question becomes easier if different parts are denoted by names like M and N. This approach makes the question easier to handle and solve.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

