
Integrate the given expression,
\[\int{\dfrac{{{x}^{2}}}{{{\left( a+bx \right)}^{2}}}dx,x\ne \dfrac{-a}{b}}\]
Answer
613.2k+ views
Hint: Put, \[a+bx=t\]. Thus from this formulate expression for x and put \[dx=dt\]. Substitute, simplify and integrate the expression formed. Then replace it by \[\left( a+bx \right)\].
Complete step-by-step answer:
We have been given an expression to integrate. Let us take it as I.
\[\therefore I=\int{\dfrac{{{x}^{2}}}{{{\left( a+bx \right)}^{2}}}dx}-(1)\]
Now let us put, \[a+bx=t\Rightarrow x=\dfrac{t-a}{b}\]
Hence, \[dx=dt\] and \[x=\left( \dfrac{t-a}{b} \right)\].
Now let us put these values in (1). Thus I becomes,
\[\begin{align}
& I=\int{\dfrac{{{\left( \dfrac{t-a}{b} \right)}^{2}}}{{{t}^{2}}}.dt=\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{b}^{2}}.{{t}^{2}}}.dt=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{t}^{2}}}.dt}}} \\
& \therefore I=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{t}^{2}}}dt} \\
\end{align}\]
Now let us expand the numerator, \[{{\left( t-a \right)}^{2}}\] which I of the form, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\].
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{t}^{2}}-2at+{{a}^{2}}}{{{t}^{2}}}.dt} \\
& I=\dfrac{1}{{{b}^{2}}}\int{\left( \dfrac{{{t}^{2}}}{{{t}^{2}}}-\dfrac{2at}{{{t}^{2}}}+\dfrac{{{a}^{2}}}{{{t}^{2}}} \right)dt} \\
\end{align}\]
Now let us split each term with the integral and integrate them separately.
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\left[ \int{\dfrac{{{t}^{2}}}{{{t}^{2}}}dt}-\int{\dfrac{2at}{{{t}^{2}}}dt}+\int{\dfrac{{{a}^{2}}}{{{t}^{2}}}.
dt} \right] \\
& I=\dfrac{1}{{{b}^{2}}}\left[ \int{1.dt}-a\int{\dfrac{2}{t}dt}+{{a}^{2}}\int{\dfrac{1}{{{t}^{2}}}dt} \right]-(2) \\
\end{align}\]
We know the basic integral formula,
\[\begin{align}
& \int{1.dx}=x \\
& \int{\dfrac{1}{x}.dx=\log x} \\
& \int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}.dx}=\dfrac{{{x}^{-2+1}}}{-2+1}=\dfrac{{{x}^{-1}}}{-1}
=\dfrac{-1}{x} \\
\end{align}\]
Now let us apply these basic formulas in equation (2) and simplify it.
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t+{{a}^{2}}\left( \dfrac{{{t}^{-2+1}}}{-2+1} \right) \right]+C \\
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t+{{a}^{2}}\left( -{{t}^{-1}} \right) \right]+C \\
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t-\dfrac{{{a}^{2}}}{t} \right]+C-(3) \\
\end{align}\]
Now let us put, \[\left( a+bx \right)\] in place of t in equation (3).
\[I=\dfrac{1}{{{b}^{2}}}\left[ \left( a+bx \right)-2a\log \left( a+bx \right)-\dfrac{{{a}^{2}}}{\left( a+bx \right)} \right]+C\]
Thus the above expression is the required interval.
\[\int{\dfrac{{{x}^{2}}}{{{\left( a+bx \right)}^{2}}}dx}=\dfrac{1}{{{b}^{2}}}\left[ \left( a+bx \right)-2a\log \left( a+bx \right)-\dfrac{{{a}^{2}}}{\left( a+bx \right)} \right]+C\]
Hence, we got the required answer.
Note: It is important that you put, \[a+bx=t\], don’t elaborate or try to simplify it directly because then the solution becomes complex. Remember the basic integration identities that we have used here.
Complete step-by-step answer:
We have been given an expression to integrate. Let us take it as I.
\[\therefore I=\int{\dfrac{{{x}^{2}}}{{{\left( a+bx \right)}^{2}}}dx}-(1)\]
Now let us put, \[a+bx=t\Rightarrow x=\dfrac{t-a}{b}\]
Hence, \[dx=dt\] and \[x=\left( \dfrac{t-a}{b} \right)\].
Now let us put these values in (1). Thus I becomes,
\[\begin{align}
& I=\int{\dfrac{{{\left( \dfrac{t-a}{b} \right)}^{2}}}{{{t}^{2}}}.dt=\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{b}^{2}}.{{t}^{2}}}.dt=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{t}^{2}}}.dt}}} \\
& \therefore I=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{\left( t-a \right)}^{2}}}{{{t}^{2}}}dt} \\
\end{align}\]
Now let us expand the numerator, \[{{\left( t-a \right)}^{2}}\] which I of the form, \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\].
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\int{\dfrac{{{t}^{2}}-2at+{{a}^{2}}}{{{t}^{2}}}.dt} \\
& I=\dfrac{1}{{{b}^{2}}}\int{\left( \dfrac{{{t}^{2}}}{{{t}^{2}}}-\dfrac{2at}{{{t}^{2}}}+\dfrac{{{a}^{2}}}{{{t}^{2}}} \right)dt} \\
\end{align}\]
Now let us split each term with the integral and integrate them separately.
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\left[ \int{\dfrac{{{t}^{2}}}{{{t}^{2}}}dt}-\int{\dfrac{2at}{{{t}^{2}}}dt}+\int{\dfrac{{{a}^{2}}}{{{t}^{2}}}.
dt} \right] \\
& I=\dfrac{1}{{{b}^{2}}}\left[ \int{1.dt}-a\int{\dfrac{2}{t}dt}+{{a}^{2}}\int{\dfrac{1}{{{t}^{2}}}dt} \right]-(2) \\
\end{align}\]
We know the basic integral formula,
\[\begin{align}
& \int{1.dx}=x \\
& \int{\dfrac{1}{x}.dx=\log x} \\
& \int{\dfrac{1}{{{x}^{2}}}dx}=\int{{{x}^{-2}}.dx}=\dfrac{{{x}^{-2+1}}}{-2+1}=\dfrac{{{x}^{-1}}}{-1}
=\dfrac{-1}{x} \\
\end{align}\]
Now let us apply these basic formulas in equation (2) and simplify it.
\[\begin{align}
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t+{{a}^{2}}\left( \dfrac{{{t}^{-2+1}}}{-2+1} \right) \right]+C \\
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t+{{a}^{2}}\left( -{{t}^{-1}} \right) \right]+C \\
& I=\dfrac{1}{{{b}^{2}}}\left[ t-2a\log t-\dfrac{{{a}^{2}}}{t} \right]+C-(3) \\
\end{align}\]
Now let us put, \[\left( a+bx \right)\] in place of t in equation (3).
\[I=\dfrac{1}{{{b}^{2}}}\left[ \left( a+bx \right)-2a\log \left( a+bx \right)-\dfrac{{{a}^{2}}}{\left( a+bx \right)} \right]+C\]
Thus the above expression is the required interval.
\[\int{\dfrac{{{x}^{2}}}{{{\left( a+bx \right)}^{2}}}dx}=\dfrac{1}{{{b}^{2}}}\left[ \left( a+bx \right)-2a\log \left( a+bx \right)-\dfrac{{{a}^{2}}}{\left( a+bx \right)} \right]+C\]
Hence, we got the required answer.
Note: It is important that you put, \[a+bx=t\], don’t elaborate or try to simplify it directly because then the solution becomes complex. Remember the basic integration identities that we have used here.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

